We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Fatal Fungal Infection Has Unique Growth Patterns

By LabMedica International staff writers
Posted on 08 Sep 2016
The multidrug-resistant yeast Candida auris, which has caused fatal infections in some hospitalized patients, has at least two different growth patterns and some of its strains are as capable of causing disease as the most invasive type of yeast called Candida albicans.

Normally, a yeast copies itself and divides during growth, but the C. More...
auris samples differ in their growth characteristics in the laboratory, with a proportion failing to separate after budding, resulting in the formation of large clumps of cells that could not be physically disrupted.

Mycology specialists at the Public Health England Mycology Reference Laboratory (Bristol, UK) characterized 12 C. auris isolates by ribosomal DNA (rDNA) gene sequencing targeting the 28S rRNA or by internal transcribed spacer 1 (ITS1) regions and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis or by a combination of the two methods.

The scientists compared the pathogenicity, or disease-causing potential, of the C. auris samples taken from patients treated at six National Health Service hospitals in England with samples of other disease-causing Candida species. To do so, they injected young wax moth larvae (called Galleria mellonella, an insect model used to study human infection) with the assorted Candida samples to measure progression of disease. The investigators also found strain-specific differences in the behavior of C. auris, with the clumped strains being less capable of causing disease than the ones that did not clump. The strains that did not clump were as capable of causing disease as another type of Candida called C. albicans, which is currently believed to have the most disease-causing potential in the Candida family.

Elizabeth Johnson, PhD, director of the National Mycology Reference Laboratory and co-author of the study, said, “Despite receiving considerable attention since its first description, little is known concerning the disease-causing potential of this emerging fungal pathogen. We were surprised to find two very different growth forms of C. auris depending on the strain. We were also surprised by the virulence of this species because in most other types of Candida, the ability to cause disease relates to the organism's ability to form hyphae (fine, branching tube-like structures). C. auris is not able to form these hyphae in the laboratory or in the insect infection model, so we would have predicted reduced ability to cause disease.” The study was published on August 18, 2016, in the journal mSphere.

Related Links:
Public Health England Mycology Reference Laboratory


Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.