We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New DNA Origami Technique to Advance Disease Diagnosis

By LabMedica International staff writers
Posted on 15 May 2024

DNA origami is a method used to create nanostructures with exceptional precision, utilizing DNA strands as the foundational building blocks. More...

These structures, however, are inherently fragile and prone to disintegration under biological conditions, such as fluctuations in temperature or the presence of certain enzymes in living organisms. To address this vulnerability, researchers have now devised an innovative method to both customize and strengthen DNA origami, offering the potential to advance drug delivery and disease diagnostics.

A team of scientists from the universities of Portsmouth (Portsmouth, UK) and Leicester (Leicester, UK) has pioneered a novel approach to reinforce these origami structures, making them both stronger and more adaptable through a process they call triplex-directed photo-cross-linking. This technique involves the strategic addition of new nucleotide sequences to the DNA during the design phase. These sequences are the basic building blocks of DNA and act as attachment points for functional molecules, enhancing the structure's stability and functionality.

The attachment of these molecules is facilitated using triplex-forming oligonucleotides that carry a cross-linking agent. A chemical reaction driven by UVA light then permanently binds these molecules to the DNA, creating what the researchers describe as “super-staples.” These staples significantly enhance the integrity of the structure, making it less susceptible to thermal degradation and enzymatic breakdown. This new method is both scalable and economical, compatible with existing origami designs, and does not require redesigning the scaffold. It can be implemented using just a single strand of DNA. DNA origami is currently being applied in several biomedical fields, including vaccines, biological nanosensors, drug delivery systems, structural biology, and carriers for genetic material.

"The potential applications of this technique are far-reaching. The ability to tailor DNA origami structures with specific functionalities holds immense promise for advancing medical treatments and diagnostics,” said Dr. David Rusling from the University of Portsmouth’s School of Pharmacy and Biomedical Sciences. "We envision a future where DNA origami structures could be used to deliver drugs or DNA directly to diseased cells, or to create highly sensitive diagnostic tools.”

Related Links:
University of Portsmouth
University of Leicester


Gold Member
Automated MALDI-TOF MS System
EXS 3000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.