We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Wireless, Handheld, Non-Invasive Device Detects Alzheimer's and Parkinson's Biomarkers

By LabMedica International staff writers
Posted on 21 Nov 2023
Print article
Image: The biosensor consists of a chip with a highly sensitive transistor (Photo courtesy of UC San Diego)
Image: The biosensor consists of a chip with a highly sensitive transistor (Photo courtesy of UC San Diego)

The prevalence of neurodegenerative diseases like Alzheimer’s and Parkinson’s is increasing. Current diagnostic methods for these conditions typically involve invasive procedures such as spinal taps and MRI scans, which can be daunting for patients and pose challenges for those with mobility issues or limited access to medical facilities. In response to these challenges, researchers have developed a groundbreaking handheld device that non-invasively detects biomarkers associated with Alzheimer’s and Parkinson’s Diseases. Additionally, this device has the capability to wirelessly transmit its findings to a computer or smartphone.

Developed by an international team of researchers led by UC San Diego (La Jolla, CA, USA), the device utilizes an electrical detection system rather than a chemical one. This approach is both simpler and more accurate. The core component of the device is a highly sensitive transistor, known as a field effect transistor (FET), featuring a graphene layer that is just one atom thick. This graphene FET (GFET) incorporates three electrodes: the source and drain electrodes connected to a battery’s positive and negative poles to facilitate current flow, and a gate electrode that regulates this current. A unique DNA strand, acting as a probe, is attached to the gate electrode. This probe specifically binds to amyloid beta, tau, or synuclein proteins. The interaction between these amyloids and their corresponding DNA probe alters the current between the source and drain electrodes, and it is this change in current or voltage that signals the presence of specific biomarkers.

The device’s effectiveness was validated using brain-derived amyloid proteins from deceased Alzheimer’s and Parkinson’s patients. The biosensors accurately detected the disease-specific biomarkers, matching the precision of current advanced diagnostic methods. Remarkably, the device requires only minimal sample quantities and can accurately perform even in samples containing a variety of proteins. While detecting tau proteins presented more challenges, the device’s ability to analyze multiple biomarkers allows for a comprehensive and reliable diagnosis. Future plans include testing the device with blood plasma, cerebrospinal fluid, and eventually saliva and urine samples in hospitals and nursing homes. Following successful trials, the researchers aim to seek FDA approval within the next few months, with the ultimate goal of commercializing the device within a year.

“This portable diagnostic system would allow testing at-home and at point of care, like clinics and nursing homes, for neurodegenerative diseases globally,” said Ratnesh Lal, a bioengineering, mechanical engineering and materials science professor at the UC San Diego Jacobs School of Engineering.

Related Links:
UC San Diego 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.