We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Study Identifies Molecular Signatures in Arthritis Patients for Incorporation In Diagnostic Tests

By LabMedica International staff writers
Posted on 20 May 2022
Print article
Image: Molecular profiling of diseased joint tissue can predict response to arthritis treatment (Photo courtesy of QMUL)
Image: Molecular profiling of diseased joint tissue can predict response to arthritis treatment (Photo courtesy of QMUL)

Much progress has been made over the past decades in treating rheumatoid arthritis (RA), although a significant number of patients (approximately 40%) do not respond to specific drug therapies, and 5-20% of people with the disease are resistant to all current forms of medication. New research has shown that molecular profiling of the diseased joint tissue can significantly impact whether specific drug treatments will work to treat RA patients. The incorporation of these molecular signatures in future diagnostic tests will be a necessary step to translate these findings into routine clinical care.

Researchers at Queen Mary University of London (QMUL, London, UK) have also identified specific genes associated with resistance to most available drugs therapies, commonly referred to as refractory disease, which could provide the key to developing new, successful drugs to help these people. The researchers carried out a biopsy-based clinical trial, involving 164 arthritis patients, in which their responses to either rituximab or tocilizumab – two drugs commonly used to treat RA – were tested. The results of the original trial demonstrated that in those patients with a low synovial B-cell molecular signature only 12% responded to a medication that targets B cells (rituximab), whereas 50% responded to an alternative medication (tocilizumab). When patients had high levels of this genetic signature, the two drugs were similarly effective.

As part of the first-of-its-kind study, the team also looked at the cases where patients did not respond to treatment via any of the drugs and found that there were 1,277 genes that were unique to them specifically. Building on this, the researchers applied a data analyses technique called machine learning models to develop computer algorithms which could predict drug response in individual patients. The machine learning algorithms, which included gene profiling from biopsies, performed considerably better at predicting which treatment would work best compared to a model which used only tissue pathology or clinical factors.

The study strongly supports the case for performing gene profiling of biopsies from arthritic joints before prescribing expensive so-called biologic targeted therapies. This could save considerable time and money and help avoid potential unwanted side-effects, joint damage, and worse outcomes which are common amongst patients. As well as influencing treatment prescription, such testing could also shed light on which people may not respond to any of the current drugs on the market, emphasizing the need for developing alternative medications.

“Incorporating molecular information prior to prescribing arthritis treatments to patients could forever change the way we treat the condition. Patients would benefit from a personalized approach that has a far greater chance of success, rather than the trial-and-error drug prescription that is currently the norm,” said Professor Costantino Pitzalis, Versus Arthritis Professor of Rheumatology at Queen Mary University of London. “These results are incredibly exciting in demonstrating the potential at our fingertips, however, the field is still in its infancy and additional confirmatory studies will be required to fully realize the promise of precision medicine in RA.”

Related Links:
Queen Mary University of London 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.