We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-Powered Pathology Solutions Accurately Predict Outcomes for HER2-Targeted Therapy in Metastatic CRC

By LabMedica International staff writers
Posted on 04 Feb 2025

A new study has highlighted how artificial intelligence (AI)-powered analysis of HER2 and the tumor microenvironment (TME) can improve patient stratification and predict clinical outcomes more effectively. More...

The study, published in the Journal of Clinical Oncology, demonstrates how Lunit’s (Seoul, South Korea) advanced AI pathology solutions, Lunit SCOPE HER2 and Lunit SCOPE IO, can significantly improve the evaluation of the HER2 biomarker and predict clinical outcomes in patients with metastatic colorectal cancer (mCRC) undergoing HER2-targeted therapies. This study presented results from the TRIUMPH phase II clinical trial, which involved 30 patients with HER2-positive mCRC treated with a dual HER2-targeted therapy regimen that included Trastuzumab and Pertuzumab. Lunit's AI technology was used to assess both HER2 status and various TME factors, with notable findings. Lunit SCOPE HER2 achieved an impressive 86.7% accuracy when compared to pathologist evaluations of HER2 immunohistochemistry (IHC), and it reached 100% accuracy in identifying HER2 IHC 3+ cases.

The AI model identified patients with a high proportion of HER2 IHC 3+ staining tumor cells (AI-H3-high, >50%), who showed better clinical outcomes than those identified using conventional HER2 assessment methods. The study also utilized Lunit SCOPE IO for detailed TME profiling, analyzing lymphocyte, macrophage, and fibroblast densities. Among AI-H3-high patients, those with low stromal TME density (TME-low) experienced the most favorable outcomes. These results underscore the potential of AI-driven pathology tools to revolutionize precision oncology. By providing a more accurate and detailed analysis of HER2 status and TME characteristics, Lunit’s solutions offer a better method for patient stratification and predicting responses to HER2-targeted therapies that are currently available or under development. This capability may lead to more personalized treatment plans, ultimately improving outcomes for mCRC patients and potentially for other cancers with HER2 amplification.

"This study underscores the potential of AI technology to redefine how we evaluate biomarkers and predict treatment responses," said Dr. Takayuki Yoshino, principal investigator of the research. "The ability to more precisely stratify patients will lead to more personalized treatment options, improving outcomes for patients with HER2-positive metastatic colorectal cancer."

"The findings from this study demonstrate how Lunit's AI-powered solutions, Lunit SCOPE HER2 and Lunit SCOPE IO, can provide clinicians with actionable insights to refine treatment strategies," added Brandon Suh, CEO of Lunit.

Related Links:
Lunit


New
Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The patented biosensor measures enzymatic activity associated with inflammatory disease (Photo courtesy of Hawkeye Bio)

Non-Invasive and Radiation-Free Diagnostic Identifies Early-Stage Lung Cancer Across All Subtypes

Lung cancer remains the leading cause of cancer-related deaths, with nearly 125,000 deaths and 227,000 new cases estimated in the U.S. for 2025. Despite evidence showing that early detection significantly... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.