We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Single Test Predicts Cancer Recurrence and Side-Effects of Immunotherapy

By LabMedica International staff writers
Posted on 16 Sep 2022
Print article
Image: Experimental test promises to predict side-effects and cancer’s return in patients treated with immunotherapy (Photo courtesy of National Cancer Institute)
Image: Experimental test promises to predict side-effects and cancer’s return in patients treated with immunotherapy (Photo courtesy of National Cancer Institute)

Patients treated with immunotherapies – which harness the immune system to attack cancer cells – are likely to see their cancer recur or have severe side effects. To spare normal cells from autoimmune attack, immune cells have “checkpoint” sensors that turn them off when they receive an appropriate signal. The body recognizes tumors as abnormal, but cancer cells hijack checkpoints, including programmed death receptor 1 (PD-1), to turn off immune attack. As one type of immunotherapy, PD-1 inhibitors are effective against many cancers, and are used as adjuvant therapy in patients with resected melanoma. Nevertheless, some patients suffer recurrent disease or severe treatment-related side effects. Now, a single research test has the potential to predict which patients treated with immunotherapies are likely to have their cancer recur or have severe side effects.

A study led by researchers at NYU Grossman School of Medicine (New York City, NY, USA) revolved around the set of immune system signaling proteins called antibodies that recognize invading bacteria, viruses, and fungi. These blood proteins are designed to glom onto and inactivate specific bacterial and viral proteins, but in some cases “autoantibodies” also react to the body’s “self” proteins to cause autoimmune disease. The research team theorized that certain patients might have higher levels of key autoantibodies prior to treatment but not enough to be detected as autoimmune disease. This hidden susceptibility, they hypothesized, would then be triggered by checkpoint inhibitors to cause greater immune-based side effects.

The researchers obtained blood samples from more than 950 patients enrolled in one of two Phase 3 randomized controlled trials of adjuvant checkpoint inhibitors in patients with advanced melanoma. Tumors in these patients had been surgically removed and blood samples collected before they received any treatment. The new test employs a microchip with 20,000 proteins attached in specific spots. When an antibody recognizes any of the proteins present in a blood sample, those spots glow with the signal intensifying as the concentration of antibody increases.

Based on the newly identified panel of autoantibodies, and using statistical modeling, the researchers developed a score-based prediction system for each treatment used. Patients with a high autoantibody recurrence score were found to have quicker disease return than those with a lower score. Similarly, patients with higher pre-treatment autoantibody toxicity scores were significantly more likely to develop severe side effects than those with lower scores. Moving forward the researchers plan to test the predictive value of autoantibody signatures in patients with the other cancer types for which checkpoint inhibitors are currently approved for use.

“Our results show that the new research test, by predicting whether a patient will respond to a treatment or experience side effects, has the potential to help physicians make more precise treatment recommendations,” said study first author Paul Johannet, MD. “With further validation, this composite panel might help patients to better balance the chances of treatment success against severe side effects.”

Related Links:
NYU Grossman School of Medicine 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control

Print article

Channels

Molecular Diagnostics

view channel
Image: Prostate cancer cell image taken using a scanning electron microscope (Photo courtesy of LRI EM Unit)

New Discoveries of Prostate Cancer Evolution Pave Way for Genetic Test

Prostate cancer ranks as one of the most common cancers affecting men, and while it accounts for a significant number of male cancer fatalities, many men live with it rather than die from it.... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Pathology

view channel
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique.... Read more

Industry

view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.