We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genome Sequencing Identifies Myeloma Precursor Disease with Progression Risk

By LabMedica International staff writers
Posted on 08 Apr 2021
Multiple myeloma (MM) is the second most common hematological malignancy and is consistently preceded by the asymptomatic expansion of clonal plasma cells, termed either monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM).

These two precursor conditions are found in 2%–3% of the general population aged older than 40 years. More...
Only a small fraction of MGUS will ultimately progress to MM, whereas ~60% of persons with SMM will progress within 10 years of initial diagnosis. Currently, the differentiation between MGUS and SMM is based on indirect measures and surrogate markers of disease burden.

Hematologists and Oncologists at the Memorial Sloan Kettering Cancer Center (New York, NY, USA) and their colleagues interrogated genome sequence data for 80 multiple myeloma, 18 MGUS, and 14 SMM cases, including a single SMM case classified as high risk based on an available prognostic model. The team compared genome features in 17 precursor cases that progressed to multiple myeloma within two years and 15 stable precursor cases, uncovering a set of “myeloma-defining genomic events” that included chromothripsis, aneuploidy, driver gene mutations, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) mutational profiles, and templated insertions.

For all samples, bone marrow plasma cells (BMPCs) were isolated from bone marrow aspirates and sorted on a BD FACSAria III instrument (BD Biosciences, San Jose, CA, USA). For matched control DNA from each patient, bone marrow T cells or peripheral blood mononuclear cells were used. The T cells were isolated from the BM aspirates and sorted also using the BD FACSAria III. Standard input whole-genome sequencing were run on a NovaSeq 6000 in a 150 bp/150 bp paired-end run (Illumina, San Diego, CA, USA).

The scientists reported that clinically stable cases of MGUS and SMM are characterized by a different genomic landscape and by differences in the temporal acquisition of myeloma-defining genomic events in comparison to progressive entities. In contrast, the investigators reported, the more clinically stable set of precursor gammopathies were missing such alterations. They also tended to surface in individuals diagnosed with MGUS or SMM somewhat later in life (between around 28 and 65 years old), compared to precursor conditions in those with progressive disease, who were diagnosed between the ages of five and 46 years.

The authors concluded that despite its limited sample size, their study provides proof of principle that whole genome sequencing (WGS) has the potential to accurately differentiate stable and progressive precursor conditions in low disease burden clinical states. The application of this technology in the clinic has the potential to significantly alter the management of individual patients, but will require confirmation in larger studies. The study was published on March 25, 2021 in the journal Nature Communications.

Related Links:
Memorial Sloan Kettering Cancer Center
BD Biosciences
Illumina



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Hemodynamic System Monitor
OptoMonitor
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.