We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genome Sequencing Identifies Myeloma Precursor Disease with Progression Risk

By LabMedica International staff writers
Posted on 08 Apr 2021
Multiple myeloma (MM) is the second most common hematological malignancy and is consistently preceded by the asymptomatic expansion of clonal plasma cells, termed either monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM).

These two precursor conditions are found in 2%–3% of the general population aged older than 40 years. More...
Only a small fraction of MGUS will ultimately progress to MM, whereas ~60% of persons with SMM will progress within 10 years of initial diagnosis. Currently, the differentiation between MGUS and SMM is based on indirect measures and surrogate markers of disease burden.

Hematologists and Oncologists at the Memorial Sloan Kettering Cancer Center (New York, NY, USA) and their colleagues interrogated genome sequence data for 80 multiple myeloma, 18 MGUS, and 14 SMM cases, including a single SMM case classified as high risk based on an available prognostic model. The team compared genome features in 17 precursor cases that progressed to multiple myeloma within two years and 15 stable precursor cases, uncovering a set of “myeloma-defining genomic events” that included chromothripsis, aneuploidy, driver gene mutations, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) mutational profiles, and templated insertions.

For all samples, bone marrow plasma cells (BMPCs) were isolated from bone marrow aspirates and sorted on a BD FACSAria III instrument (BD Biosciences, San Jose, CA, USA). For matched control DNA from each patient, bone marrow T cells or peripheral blood mononuclear cells were used. The T cells were isolated from the BM aspirates and sorted also using the BD FACSAria III. Standard input whole-genome sequencing were run on a NovaSeq 6000 in a 150 bp/150 bp paired-end run (Illumina, San Diego, CA, USA).

The scientists reported that clinically stable cases of MGUS and SMM are characterized by a different genomic landscape and by differences in the temporal acquisition of myeloma-defining genomic events in comparison to progressive entities. In contrast, the investigators reported, the more clinically stable set of precursor gammopathies were missing such alterations. They also tended to surface in individuals diagnosed with MGUS or SMM somewhat later in life (between around 28 and 65 years old), compared to precursor conditions in those with progressive disease, who were diagnosed between the ages of five and 46 years.

The authors concluded that despite its limited sample size, their study provides proof of principle that whole genome sequencing (WGS) has the potential to accurately differentiate stable and progressive precursor conditions in low disease burden clinical states. The application of this technology in the clinic has the potential to significantly alter the management of individual patients, but will require confirmation in larger studies. The study was published on March 25, 2021 in the journal Nature Communications.

Related Links:
Memorial Sloan Kettering Cancer Center
BD Biosciences
Illumina



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Urine samples can indicate lupus nephritis without the need for repeat and painful renal biopsies (Photo courtesy of Shutterstock)

Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients

Lupus is an autoimmune disorder that causes the immune system to attack the body’s own tissues and organs. Among the five million people living with lupus globally, nearly half develop lupus nephritis,... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.