We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Handheld Mass Spectrometer Identifies Cancer Tissue in Seconds

By LabMedica International staff writers
Posted on 19 Sep 2017
Print article
Image: The MasSpec Pen rapidly and accurately detects live cancer during surgery, helping improve treatment and reduce the chances of cancer recurrence (Photo courtesy of the University of Texas at Austin).
Image: The MasSpec Pen rapidly and accurately detects live cancer during surgery, helping improve treatment and reduce the chances of cancer recurrence (Photo courtesy of the University of Texas at Austin).
A team of scientists and engineers has invented a powerful device that rapidly identifies living cancerous tissue, giving surgeons precise diagnostic information about what tissue to cut or preserve.

“If you talk to cancer patients after surgery, one of the first things many will say is ‘I hope the surgeon got all the cancer out’,” said Livia Schiavinato Eberlin, assistant professor at University of Texas at Austin (Austin, TX, USA) who designed the study and led the team, “our technology could vastly improve the odds that surgeons really do remove every last trace of cancer during surgery.”

The current method, Frozen Section Analysis, for diagnosis and determining the boundary between cancer and normal tissue during surgery is slow and sometimes inaccurate. Each sample can take 30 minutes or more to prepare and interpret by a pathologist, increasing risk to the patient of infection and negative effects of anesthesia. For some types of cancers frozen section interpretation can be difficult, often yielding unreliable results.

The new MasSpec Pen took about 10 seconds to provide a diagnosis and was over 96% accurate in tests on tissues removed from 253 human cancer patients. It also detected cancer in marginal regions between normal and cancer tissues that presented mixed cellular composition.

This technology also offers the patient a safer surgery. “It allows us to be much more precise in what tissue we remove and what we leave behind,” said project collaborator James Suliburk, of Baylor College of Medicine. Although maximizing cancer removal is critical, removing too much healthy tissue can also have profound negative consequences: For example, breast cancer patients could experience higher risk of painful side effects and nerve damage, in addition to aesthetic impacts. Thyroid cancer patients could lose speech ability or the ability to regulate the body’s calcium levels in ways important for muscle and nerve function.

Living cells produce metabolites and each type of cancer produces a unique set of metabolites and other biomarkers. “Because the metabolites in cancer and normal cells are so different, we extract and analyze them with the MasSpec Pen to obtain a molecular fingerprint of the tissue. What is incredible is that through this simple and gentle chemical process, the MasSpec Pen rapidly provides diagnostic molecular information without causing tissue damage,” said Prof. Eberlin.

The molecular fingerprint obtained by the MasSpec Pen from an uncharacterized tissue sample is instantaneously evaluated by a “statistical classifier” software trained on a database of molecular fingerprints that Prof. Eberlin and her colleagues gathered from the 253 human tissue samples. The samples included both normal and cancerous tissues of the breast, lung, thyroid, and ovary.

The pen releases a drop of water onto the tissue, and small molecules migrate into the water. The water sample is driven into a mass spectrometer, which detects thousands of molecules as a molecular fingerprint. The disposable device requires simply holding the pen against the patient’s tissue, triggering the automated analysis using a foot pedal, and waiting a few seconds for a result.

In tests performed on human samples, the device was more than 96% accurate for cancer diagnosis. It also diagnosed cancer in live, tumor-bearing mice during surgery without causing observable tissue harm or stress to the animals.

So the process would be low-impact for patients and biocompatible. “When designing the MasSpec Pen, we made sure the tissue remains intact by coming into contact only with water and the plastic tip of the MasSpec Pen during the procedure,” said Prof. Zhang.

The study, by Zhang J et al, was published September 6, 2017, in the journal Science Translational Medicine.

Related Links:
University of Texas at Austin

Flocked Swab
HydraFlock and PurFlock Ultra
Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Semi-Automatic Coagulation Analyzer
Clot 2B
Automated Chemistry Analyzer
TC-Matrix 600

Print article


Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more


view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more


view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more


view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more


view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more


view channel
Image: The global HbA1c testing devices market is expected to reach USD 2.56 billion in 2027 (Photo courtesy of Freepik)

Global Hemoglobin A1c Testing Devices Market Driven by Rising Prevalence of Diabetes

Hemoglobin A1c (HbA1c), or glycated hemoglobin, refers to hemoglobin with glucose attached. HbA1c testing devices are used for blood tests that determine average blood glucose, or blood sugar levels.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.