We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Myoglobin Gene Mutation Causes New Muscle Disease

By LabMedica International staff writers
Posted on 08 Apr 2019
The cause of myoglobinopathy, a newly described disease of the muscles, has been traced to a mutation in the gene that encodes for the protein myoglobin (MB).

Myoglobin, like hemoglobin (Hb), is a cytoplasmic protein that binds oxygen on a heme group. More...
It harbors only one heme group, whereas hemoglobin has four. Although its heme group is identical to those in Hb, MB has a higher affinity for oxygen than does hemoglobin. This difference is related to its different role: whereas hemoglobin transports oxygen, myoglobin's function is to store oxygen. MB also acts as scavenger of free radicals and other reactive oxygen species, helping the cell to avoid damage caused by oxidative stress.

The newly characterized disease called myoglobinopathy manifests between the fourth and fifth decade of life. It causes a progressive weakness of the axial and limb muscles, and in more advanced stages affects the respiratory musculature and the heart.

Investigators at the Bellvitge Biomedical Research Institute (Barcelona, Spain) analyzed the genomes of fourteen members of six unrelated European families who displayed signs of myoglobinopathy. They identified an autosomal dominant myopathy with variable cardiac involvement and characteristic sarcoplasmic inclusions in skeletal and cardiac muscle that was linked to a recurrent substitution mutation in the MB gene.

Biochemical characterization revealed that the mutant myoglobin had altered oxygen binding, exhibited a faster heme dissociation rate, and had a lower reduction potential compared to wild-type myoglobin. Preliminary studies showed that effects of the myoglobin mutation caused elevated superoxide levels at the cellular level.

"This is the first time that a disease caused by a mutation in the myoglobin gene has been identified," said first author Dr. Montse Olivé, a physician and researcher in the institute of neuropathology at the Bellvitge Biomedical Research Institute. "We have identified the same mutation in several members of six unrelated European families, all of whom had the same symptoms and showed very characteristic lesions - called sarcoplasmic bodies - in muscle biopsies."

The genetic basis of myoglobinopathy was discussed in a paper published in the March 27, 2019, online edition of the journal Nature Communications.

Related Links:
Bellvitge Biomedical Research Institute


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.