We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




DNA Biosensor Enables Early Diagnosis of Cervical Cancer

By LabMedica International staff writers
Posted on 21 Dec 2023
Print article
Image: The electrochemical sensor detects HPV-16 and HPV-18 with high specificity (Photo courtesy of 123RF)
Image: The electrochemical sensor detects HPV-16 and HPV-18 with high specificity (Photo courtesy of 123RF)

Molybdenum disulfide (MoS2), recognized for its potential to form two-dimensional nanosheets like graphene, is a material that's increasingly catching the eye of the scientific community. These nanosheets are formed through the stacking of S–Mo–S layers that are held together by Van der Waals forces. MoS2's distinctive structural, optical, thermal, and electrochemical attributes have paved the way for research in diverse domains, including biomolecule sensing, optoelectronics, energy storage, and more. Historically, carbon nanostructures have been used as an immobilization platform for DNA. To replace carbon with MoS2 as an effective electrochemical DNA sensor, the electrical conductivity of MoS2 must be improved significantly.

To tackle this challenge, researchers at Chung-Ang University (Seoul, South Korea) have devised an electrochemical DNA biosensor using a composite of graphitic nano-onions and MoS2 nanosheets. This biosensor shows promise in detecting human papillomavirus (HPV) types 16 and 18, offering the potential for early cervical cancer diagnosis. The team measured the biosensor's sensitivity to these HPV types using the differential pulse voltammetry (DPV) technique in conjunction with methylene blue (MB) as a redox indicator. They observed that the nano-onion/MoS2 nanosheet composite electrode demonstrated higher current peaks than its MoS2-only counterpart, suggesting enhanced conductive electron transfer facilitated by the nano-onions.

This enhancement led to the effective and specific detection of target DNAs from HPV-16 and HPV-18 Siha and Hela cancer cell lines. As a result, MoS2 nanosheets with improved electrical conductivity, when combined with nano-onions, have shown potential as a robust platform for creating electrochemical biosensors that can efficiently diagnose various health conditions, including cervical cancer. Moreover, the integration of nano-onions or nanodiamonds with various organic biomaterials could lead to advancements in chemical functionality, electron transfer conductivity, light absorption, and more. These developments hold promise for groundbreaking applications in disease sensing, targeted drug delivery, and biomedical imaging and diagnostics.

Related Links:
Chung-Ang University 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.