We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Novel Noninvasive Test Detects Malaria Infection without Blood Sample

By LabMedica International staff writers
Posted on 07 Aug 2023
Print article
Image: The innovative noninvasive test for malaria uses lasers and ultrasound (Photo courtesy of Freepik)
Image: The innovative noninvasive test for malaria uses lasers and ultrasound (Photo courtesy of Freepik)

Malaria which poses a significant global health challenge is currently diagnosed using two methods. The traditional approach involves examining blood smears under a microscope, but due to resource and expertise requirements, many regions are transitioning to rapid antigen blood tests. However, both methods lack the required sensitivity. Now, an innovative noninvasive test utilizing lasers and ultrasound shows promise as a more sensitive testing alternative for malaria.

A research team co-led by Yale School of Public Health (New Haven, CT, USA) is creating two improved prototypes of their cytophone testing platform that will undergo extensive field tests in Burkina Faso, a West African nation where malaria is endemic. Their work builds upon an earlier nonportable prototype designed to detect circulating melanoma cells non-invasively. The new portable version aims to detect malaria infections in people living in endemic areas and aid malaria interventions in Africa.

The cytophone technology employs lasers of specific wavelengths directed at superficial blood vessels. Malaria parasites, upon entering red blood cells, liberate amino acids using hemoglobin. This process releases hemozoin, a compound containing iron. Upon being hit by a laser, hemozoin absorbs more of the energy than hemoglobin, leading to greater energy absorption in malaria-infected cells. As a result, acoustic waves are generated due to heat expansion that is detected by the cytophone technology using a small ultrasound transducer placed on the skin. Through software analysis, peaks in the acoustic waves can identify malaria infections.

Previous studies have demonstrated the device's ability to identify infections in mice using rodent species of malaria parasites and in human blood infected with malaria parasites. Subsequently, a portable version of the device was developed, and a proof-of-concept study was conducted on malaria-infected adults in Cameroon, yielding promising results. However, some unanswered questions remained, prompting the need for improvements in durability, precision, and operational complexity. The researchers also intended to extend their clinical work to study asymptomatic infections, including those in children.

Using a USD 500,000 grant received from the Gates Foundation, the research team plans to build two new, smaller, and more advanced prototypes of the device. These upgraded versions will incorporate improved ultrasound, laser, and software processing capabilities. In collaboration with partners in Burkina Faso, the team will conduct clinical studies to validate the technology's effectiveness in diagnosing malaria in both infected and uninfected adults, including school-aged children with symptomatic malaria. The aim is to fine-tune the device to ensure accurate data acquisition and understand potential causes of false positive or negative results. Ultimately, this technology could lead to significant advancements in diagnosing, treating, and comprehending malaria, as it has the potential to be far more sensitive than current diagnostic tests.

Additionally, the cytophone technology could address an emerging issue with certain antigen tests. In Africa, common antigen tests target an antigen found in Plasmodium falciparum, the most dangerous of the five species of malaria-causing protozoa. However, researchers have encountered parasites with deletions of this antigen, which compromises the accuracy of such tests. Since the cytophone relies on hemozoin, a marker produced by all species of malaria parasites during their life cycle, it avoids this problem. Moreover, the technology's focus on hemozoin could aid researchers in developing and studying new antimalarial drugs targeting this pathway in humans, noninvasively, which is crucial for combating parasite resistance to medications in the long run.

Related Links:
Yale School of Public Health

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more


view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more


view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.