We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App

Novel Noninvasive Test Detects Malaria Infection without Blood Sample

By LabMedica International staff writers
Posted on 07 Aug 2023
Print article
Image: The innovative noninvasive test for malaria uses lasers and ultrasound (Photo courtesy of Freepik)
Image: The innovative noninvasive test for malaria uses lasers and ultrasound (Photo courtesy of Freepik)

Malaria which poses a significant global health challenge is currently diagnosed using two methods. The traditional approach involves examining blood smears under a microscope, but due to resource and expertise requirements, many regions are transitioning to rapid antigen blood tests. However, both methods lack the required sensitivity. Now, an innovative noninvasive test utilizing lasers and ultrasound shows promise as a more sensitive testing alternative for malaria.

A research team co-led by Yale School of Public Health (New Haven, CT, USA) is creating two improved prototypes of their cytophone testing platform that will undergo extensive field tests in Burkina Faso, a West African nation where malaria is endemic. Their work builds upon an earlier nonportable prototype designed to detect circulating melanoma cells non-invasively. The new portable version aims to detect malaria infections in people living in endemic areas and aid malaria interventions in Africa.

The cytophone technology employs lasers of specific wavelengths directed at superficial blood vessels. Malaria parasites, upon entering red blood cells, liberate amino acids using hemoglobin. This process releases hemozoin, a compound containing iron. Upon being hit by a laser, hemozoin absorbs more of the energy than hemoglobin, leading to greater energy absorption in malaria-infected cells. As a result, acoustic waves are generated due to heat expansion that is detected by the cytophone technology using a small ultrasound transducer placed on the skin. Through software analysis, peaks in the acoustic waves can identify malaria infections.

Previous studies have demonstrated the device's ability to identify infections in mice using rodent species of malaria parasites and in human blood infected with malaria parasites. Subsequently, a portable version of the device was developed, and a proof-of-concept study was conducted on malaria-infected adults in Cameroon, yielding promising results. However, some unanswered questions remained, prompting the need for improvements in durability, precision, and operational complexity. The researchers also intended to extend their clinical work to study asymptomatic infections, including those in children.

Using a USD 500,000 grant received from the Gates Foundation, the research team plans to build two new, smaller, and more advanced prototypes of the device. These upgraded versions will incorporate improved ultrasound, laser, and software processing capabilities. In collaboration with partners in Burkina Faso, the team will conduct clinical studies to validate the technology's effectiveness in diagnosing malaria in both infected and uninfected adults, including school-aged children with symptomatic malaria. The aim is to fine-tune the device to ensure accurate data acquisition and understand potential causes of false positive or negative results. Ultimately, this technology could lead to significant advancements in diagnosing, treating, and comprehending malaria, as it has the potential to be far more sensitive than current diagnostic tests.

Additionally, the cytophone technology could address an emerging issue with certain antigen tests. In Africa, common antigen tests target an antigen found in Plasmodium falciparum, the most dangerous of the five species of malaria-causing protozoa. However, researchers have encountered parasites with deletions of this antigen, which compromises the accuracy of such tests. Since the cytophone relies on hemozoin, a marker produced by all species of malaria parasites during their life cycle, it avoids this problem. Moreover, the technology's focus on hemozoin could aid researchers in developing and studying new antimalarial drugs targeting this pathway in humans, noninvasively, which is crucial for combating parasite resistance to medications in the long run.

Related Links:
Yale School of Public Health

Platinum Supplier
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Gold Supplier
hCG Whole Blood Pregnancy Test
cTnI Test
OnSite Troponin I Combo Rapid Test
Blood Mixer Roller
CAPPRondo Blood Mixer Roller

Print article


Clinical Chemistry

view channel
Image: The new assays are designed to run on the B•R•A•H•M•S KRYPTOR compact PLUS clinical chemistry analyzer (Photo courtesy of Thermo Fisher)

Breakthrough Immunoassays to Aid in Risk Assessment of Preeclampsia

Preeclampsia is a life-threatening blood pressure condition that can arise during pregnancy and the postpartum phase. This severe pregnancy complication is a primary cause of maternal and fetal mortality... Read more

Molecular Diagnostics

view channel
Image: A CRISPR technology-based diagnostic test detects MPXV in clinical samples with acute precision (Photo courtesy of 123RF)

Powerful Diagnostic Tool Accurately Detects Monkeypox Virus Faster Than Any Method

At present, testing for the monkeypox virus (MPXV) is done mainly in centralized labs, and it can take days to get results due to location and logistical issues. Now, researchers have leveraged cutting-edge... Read more


view channel
Image: The US FDA has cleared HemoScreen point of care CBC for direct capillary sampling (Photo courtesy of PixCell Medical)

Point of Care CBC Analyzer with Direct Capillary Sampling Enhances Ease-of-Use and Testing Throughput

The world’s only 5-part differential Complete Blood Count (CBC) analyzer that is FDA-cleared, CE-marked, and TGA-approved for point-of-care use has now been granted FDA 510(k) clearance for direct capillary... Read more


view channel
Image: Immune cells present long before infection predict flu symptoms (Photo courtesy of Shutterstock.com)

Single Blood Draw to Detect Immune Cells Present Months before Flu Infection Can Predict Symptoms

For decades, if not centuries, scientists have struggled to solve the mystery of why certain individuals fall ill to infections while others remain unaffected. In an impressive development, researchers... Read more


view channel
Image: The rapid diagnostic test could pinpoint the correct antibiotic for infection treatment in under an hour (Photo courtesy of Microplate Dx)

Point-of-Care Device to Reduce Antibiotic Susceptibility Testing Time from Days to Minutes

Antimicrobial resistance (AMR) is a significant global health issue, currently leading to over 1.27 million deaths worldwide each year. By 2050, AMR could be causing up to 10 million deaths annually, surpassing... Read more


view channel
Image: The Tasso+ device has received CE Mark certification (Photo courtesy of Tasso)

Groundbreaking Blood Lancing Device Obtains Microliter Capillary Whole Blood Samples Painlessly

A convenient, virtually pain-free blood lancet that collects whole liquid blood samples has received CE Mark designation, making the patient-centric, high-volume blood collection solution available in... Read more


view channel
Image: The global fully automatic electrolyte analyzers market is projected to reach close to USD 0.77 billion by 2032 (Photo courtesy of 123RF)

Global Fully Automatic Electrolyte Analyzers Market Driven by Surge in Demand for Point-of-Care Testing

Fully automatic electrolyte analyzers can measure the levels of electrolytes in various bodily fluids like blood and plasma. Electrolytes are ions that have an electrical charge and are essential for multiple... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.