We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Protein Combination Reduces Muscle Damage in ALS Model

By LabMedica International staff writers
Posted on 25 Jul 2018
Researchers have found that high levels of the enzyme mitofusion 2 (Mfn2) prevent nerve degeneration, muscle atrophy, and paralysis in a mouse model of the muscle wasting disease amyloid lateral sclerosis (ALS).

Mitofusin-2 is a mitochondrial membrane protein that participates in mitochondrial fusion and contributes to the maintenance and operation of the mitochondrial network. More...
Mitochondria function as a dynamic network constantly undergoing fusion and fission. The balance between fusion and fission is important in maintaining the integrity of the mitochondria and facilitates the mixing of the membranes and the exchange of DNA between mitochondria.

In addition to its mitochondrial role, investigators at the Case Western Reserve University School of Medicine (Cleveland, OH, USA) reported in the July 12, 2018, online edition of the journal Cell Metabolism that Mfn2 acted as a dominant suppressor of neuromuscular synaptic loss, which preserved the health of skeletal muscles. By preserving neuromuscular synapses, increasing levels of neuronal Mfn2 prevented skeletal muscle wasting in both the ALS mouse model SOD1G93A and in aged normal mice, whereas deletion of neuronal Mfn2 produced neuromuscular synaptic dysfunction and skeletal muscle atrophy. Neuromuscular synaptic loss after sciatic nerve transection could also be alleviated by Mfn2.

Mfn2 was found to coexist with calpastatin, a protein involved in numerous membrane fusion events, such as neural vesicle exocytosis and platelet and red-cell aggregation. This association was found primarily in mitochondria-associated membranes (MAMs) where Mfn2 regulated the axonal transport of calpastatin. Furthermore, genetic inactivation of calpastatin abolished Mfn2-mediated protection of neuromuscular synapses.

Senior author Dr. Xinglong Wang, associate professor of pathology at Case Western Reserve University School of Medicine, said, “Upregulation of Mfn2 specifically in nerve cells is sufficient to abolish skeletal muscle loss in ALS and aged mice, despite ALS-causing protein being found in all organs and tissues. Mfn2 deficiency or mutations are commonly observed in patients with ALS, peripheral neuropathy, Alzheimer’s disease, and other neurodegenerative diseases in which synaptic loss has long been recognized as a prominent early feature. Supplementing Mfn2 may be a common and effective therapeutic approach to treat a wide range of diseases including but not limited to muscular disorders, patients with nerve injury, and various major neurodegenerative diseases associated with synaptic loss.”

Related Links:
Case Western Reserve University School of Medicine



Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
Hemodynamic System Monitor
OptoMonitor
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.