We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Follicular Lymphoma Linked to Tumor Suppressor Gene Activity

By LabMedica International staff writers
Posted on 13 Jul 2017
Cancer researchers have shown that loss of activity of the SESTRIN1 tumor suppressor gene was linked to the development of incurable follicular lymphoma.

Follicular lymphoma (FL) is an incurable form of B-cell lymphoma. More...
Knowing that deletions of chromosome 6q are common in this tumor type, investigators at Ecole Polytechnique Fédérale de Lausanne (Switzerland) examined the genes on this chromosome in samples taken from 200 follicular lymphoma patients.

They reported in the June 28, 2017, online edition of the journal Science Translational Medicine that they had identified the gene SESTRIN1 as a likely tumor suppressor. The investigators then examined the mechanism by which the loss of SESTRIN1 contributed to tumorigenesis and identified a mechanistic connection between SESTRIN1 and EZH2 (Enhancer of zeste homolog 2), an epigenetic modifier that plays a role in multiple cancer types.

SESTRIN1 was found to be a direct target of the lymphoma-specific EZH2 gain-of-function mutation (EZH2Y641X). SESTRIN1 inactivation disrupted p53-mediated control of mammalian target of rapamycin complex 1 (mTORC1) and enabled mRNA translation under genotoxic stress. SESTRIN1 loss represented an alternative to other mutations that maintained mTORC1 activity under nutrient starvation.

The investigators also found that the antitumor effectiveness of drug-based EZH2 inhibition depended on SESTRIN1, indicating that mTORC1 control was a critical function of EZH2 in lymphoma.

Thus, the tumor suppressor gene SESTRIN1 was shown to contribute to the genetic and epigenetic control of mTORC1 in follicular lymphoma and influence responses to targeted therapies.

Related Links:
Ecole Polytechnique Fédérale de Lausanne


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.