We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Study Explains How Drug Carriers Interact with Immune System

By LabMedica International staff writers
Posted on 20 Apr 2017
Researchers seeking to develop nanoparticle-based drug delivery systems have determined how a specialized class of nanoparticles called leukosomes avoids immune system response in a mouse model system.

Understanding interactions occurring at the interface between nanoparticles and biological components is an urgent challenge in nanomedicine due to their effect on the biological fate of the nanoparticles. More...
After the systemic injection of nanoparticles, a protein corona constructed by blood components surrounds the carrier’s surface and modulates its pharmacokinetics and biodistribution. Immune cells such as leukocytes freely circulate in blood vessels, recognize inflammation, and accumulate in inflamed tissues. They do so by using special receptors and ligands on their surface.

Investigators at Houston Methodist Hospital had previously purified leukocytes from a patient and then integrated their special ligands and receptors into the surface of liposome-like particles, which they called leukosomes. Using the body’s own materials, they built a drug delivery system camouflaged as the body’s own defense system. Leukosomes were able to target inflamed tissues because they retained the same surface properties of the immune cell membranes from which they are made.

In the current study, the investigators studied leukosomes' nanoparticle protein corona in vivo. They described in the March 6, 2017, online edition of the journal ACS Nano a time-dependent quantitative and qualitative analysis of the protein corona adsorbed in vivo on leukosomes and control liposomes. They observed that leukosomes absorbed fewer proteins than liposomes and identified a group of proteins specifically adsorbed on leukosomes. It was felt that the presence of macrophage receptors on leukosomes’ surface neutralized their protein corona-meditated uptake by immune cells.

“Now we have a clearer understanding of how to use our leukosomes to evade those immune cells and prevent the body’s inflammatory response,” said senior author Dr. Ennio Tasciotti, director of the center for biomimetic medicine at Houston Methodist Hospital. “We have known overactive immune cells can behave like Pac Men, gobbling up the nanoparticles and ridding the body of these "foreign invaders" before they reach the intended target.”


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.