We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Mutated Luciferase Generates Bright Light for Optogenetics Technique

By LabMedica International staff writers
Posted on 08 Nov 2016
A recent paper described a novel bioluminescent optogenetic technique that used a potent, mutated form of the enzyme luciferase to follow surges of calcium ions in cultured brain cells.

Optogenetics refers to a technique that uses light (usually fluorescence) to control cells in living tissue, typically neurons, which have been genetically modified to express light-sensitive ion channels. More...
This method utilizes a combination of techniques from optics and genetics to control and monitor the activities of individual neurons in living tissue – even within freely-moving animals – and to precisely measure the effects of those manipulations in real-time. Most current optical methods for monitoring Ca++ levels are based on fluorescence excitation that can cause unwanted stimulation of the optogenetic probe and other undesirable effects such as tissue autofluorescence. Luminescence is an alternate optical technology that avoids the problems associated with fluorescence.

Investigators at Vanderbilt University (Nashville, TN, USA) capitalized on a newly developed luciferase (NanoLuc) that is 100-150 times brighter than previous luciferases and which greatly expands the usefulness of luminescence technology. Their Ca++ sensor was genetically encodable to allow targeting to specific cell types and/or cellular loci, and employed this bright new luciferase to obtain excellent signal strength.

The investigators reported in the October 27, 2016, online addition of the journal Nature Communications that this sensor had a large dynamic range and partnered optimally with optogenetic probes. Ca++ fluxes that were elicited by brief pulses of light to cultured cells expressing melanopsin and to neurons-expressing channel rhodopsin were quantified and imaged with the BRET (bioluminescence resonance energy transfer) Ca++ sensor in darkness, thereby avoiding undesirable consequences of fluorescence irradiation.

"Most of the efforts in optical recording use fluorescence, but this requires a strong external light source which can cause the tissue to heat up and can interfere with some biological processes, particularly those that are light sensitive," said senior author Dr. Carl Johnson, professor of biological sciences at Vanderbilt University. "There is an inherent conflict between fluorescent techniques and optogenetics. The light required to produce the fluorescence interferes with the light required to control the cells. Luminescence, on the other hand, works in the dark!"

"For a long time neuroscientists relied on electrical techniques for recording the activity of neurons. These are very good at monitoring individual neurons but are limited to small numbers of neurons. The new wave is to use optical techniques to record the activity of hundreds of neurons at the same time. We have shown that the approach works," said Dr. Johnson. "Now we have to determine how sensitive it is. We have some indications that it is sensitive enough to detect the firing of individual neurons, but we have to run more tests to determine if it actually has this capability."

Related Links:
Vanderbilt University


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A blood biomarker test offers a clearer prognosis after cardiac arrest (Photo courtesy of Adobe Stock)

Blood Biomarker Improves Early Brain Injury Prognosis After Cardiac Arrest

After a cardiac arrest, many patients remain unconscious for days, leaving doctors and families facing uncertainty about whether meaningful recovery is possible. Current tools to assess brain damage, including... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.