We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mutated Luciferase Generates Bright Light for Optogenetics Technique

By LabMedica International staff writers
Posted on 08 Nov 2016
A recent paper described a novel bioluminescent optogenetic technique that used a potent, mutated form of the enzyme luciferase to follow surges of calcium ions in cultured brain cells.

Optogenetics refers to a technique that uses light (usually fluorescence) to control cells in living tissue, typically neurons, which have been genetically modified to express light-sensitive ion channels. More...
This method utilizes a combination of techniques from optics and genetics to control and monitor the activities of individual neurons in living tissue – even within freely-moving animals – and to precisely measure the effects of those manipulations in real-time. Most current optical methods for monitoring Ca++ levels are based on fluorescence excitation that can cause unwanted stimulation of the optogenetic probe and other undesirable effects such as tissue autofluorescence. Luminescence is an alternate optical technology that avoids the problems associated with fluorescence.

Investigators at Vanderbilt University (Nashville, TN, USA) capitalized on a newly developed luciferase (NanoLuc) that is 100-150 times brighter than previous luciferases and which greatly expands the usefulness of luminescence technology. Their Ca++ sensor was genetically encodable to allow targeting to specific cell types and/or cellular loci, and employed this bright new luciferase to obtain excellent signal strength.

The investigators reported in the October 27, 2016, online addition of the journal Nature Communications that this sensor had a large dynamic range and partnered optimally with optogenetic probes. Ca++ fluxes that were elicited by brief pulses of light to cultured cells expressing melanopsin and to neurons-expressing channel rhodopsin were quantified and imaged with the BRET (bioluminescence resonance energy transfer) Ca++ sensor in darkness, thereby avoiding undesirable consequences of fluorescence irradiation.

"Most of the efforts in optical recording use fluorescence, but this requires a strong external light source which can cause the tissue to heat up and can interfere with some biological processes, particularly those that are light sensitive," said senior author Dr. Carl Johnson, professor of biological sciences at Vanderbilt University. "There is an inherent conflict between fluorescent techniques and optogenetics. The light required to produce the fluorescence interferes with the light required to control the cells. Luminescence, on the other hand, works in the dark!"

"For a long time neuroscientists relied on electrical techniques for recording the activity of neurons. These are very good at monitoring individual neurons but are limited to small numbers of neurons. The new wave is to use optical techniques to record the activity of hundreds of neurons at the same time. We have shown that the approach works," said Dr. Johnson. "Now we have to determine how sensitive it is. We have some indications that it is sensitive enough to detect the firing of individual neurons, but we have to run more tests to determine if it actually has this capability."

Related Links:
Vanderbilt University


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
New
Gold Member
Collection and Transport System
PurSafe Plus®
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.