We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Proteins Identified Block Growth of KRAS-Mutant Cancers

By LabMedica International staff writers
Posted on 18 Oct 2016
A team of cancer researchers has defined a novel regulatory pathway in KRAS-driven cancers, which offers a potential therapeutic target for their eradication.

Approximately 20% of all human cancers have mutations in the KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) gene. More...
These KRAS-mutant cancers are among the most difficult to treat due to their resistance to chemotherapy.

Investigators at the University of California San Diego (USA) used microRNA (miRNA) functional screens to identify synthetic lethal interactions in KRAS-mutant cancer cells that showed potential be exploited therapeutically.

MiRNAs are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

The investigators reported in the October 1, 2016, online edition of the journal Cancer Research that they identified the microRNA miR-1298 in a screen that distinguished between miRNAs that blocked the growth of colorectal and lung cancer cells with mutated KRAS but failed to block the growth of the same types of cancer with normal KRAS. Using affinity purification technology, they identified the proteins tyrosine kinase FAK (Focal adhesion kinase) and the laminin subunit LAMB3 (Laminin subunit beta-3) as functional targets of miR-1298.

Further experiments showed that silencing of FAK or LAMB3 inhibited the growth of mutant KRAS-driven cancer cells, in the same manner as miR-1298. Expression of LAMB3 but not FAK was upregulated by mutant KRAS. In clinical specimens, elevated LAMB3 expression correlated with poorer survival in lung cancer patients with an oncogenic KRAS gene signature, suggesting that it might be a novel candidate biomarker in this disease setting.

“For decades researchers have tried to directly inhibit KRAS activity, but there are no well-defined binding pockets in the protein that we can target with small-molecule drugs,” said senior author Dr. Tariq Rana, professor of pediatrics at the University of California, San Diego. “Instead of trying to deter KRAS itself, we took the approach of looking for other molecules that, when inhibited, are lethal to cells only when KRAS is also mutated.”

“This clinical finding suggests LAMB3 could be used as a prognostic biomarker, and underscores LAMB3’s potential as a therapeutic target for KRAS-driven cancers,” said Dr. Rana. “What is more, it highlights miRNAs as important tools for probing complex biological processes, identifying new therapeutic targets and developing potential new RNA-based therapeutics.”

Related Links:
University of California San Diego


New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.