We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Unrelated Single-Stranded DNA Increases Efficiency of CRISPR-Cas 9 Gene Editing

By LabMedica International staff writers
Posted on 29 Aug 2016
The addition of a short section of single-stranded DNA to the reaction mixture significantly enhances the efficiency of the CRISPR/Cas9 gene editing technique.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. More...
Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

In action, CRISPR-Cas9 gene editing is a competition between cutting of the target gene and the cell's DNA repair mechanism. After Cas9 slices out the target gene, the cell exactly replaces the cut DNA, which Cas9 then slices out again. This cycle of cut and repair continues until the repair enzymes make a mistake that cannot be corrected and the gene is rendered nonfunctional.

A paper published in the August 17, 2016, online edition of the journal Nature Communications described the use of a small segment of unrelated single-stranded DNA to increase the efficiency of the CRISPR/Cas 9 technique by shortening the number of cutting and repair cycles required to disable the target gene.

Investigators at the University of California, Berkeley (USA) had found that the frequency of error-prone repair tended to increase when single-stranded DNA was present in the editing reaction. Prompted by this observation, they undertook a systematic exploration of the parameters underlying DNA-mediated stimulation of error-prone repair events. To avoid confounding effects stemming from the use of plasmid or other nucleic acid-mediated delivery of Cas9, they performed editing experiments using nucleofection to directly introduce a ribonucleoprotein complex (RNP) of Cas9 complexed with sgRNA into cells.

Results revealed that the addition of non-homologous single-stranded DNA during Cas9-mediated gene targeting greatly increased the frequency of disrupting mutations in multiple human cell lines. Consequently, this dramatically increased the number of cells with homozygous gene disruptions within the edited population. Unrelated DNA appeared to drive cells towards error-prone instead of error-free repair pathways, thereby increasing the frequency of sequence disruption by 2.5 to five times during genome editing.

"It turns out that if you do something really simple - just feed cells inexpensive synthetic oligonucleotides that have no homology anywhere in the human genome - the rates of editing go up as much as five times," said senior author Dr. Jacob Corn, assistant adjunct professor of molecular and cell biology at the University of California, Berkeley. "It gives the cell a little kick to prevent normal repair from happening."

Related Links:
University of California, Berkeley



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.