We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Micromolded Gelatin Scaffolds for Extended In Vitro Culture of Muscle Tissue

By LabMedica International staff writers
Posted on 13 Jul 2016
A novel in vitro method for growing muscle tissue for an extended period of time depends on minute scaffolds constructed from gelatin.

Gelatin is an irreversibly hydrolyzed form of collagen, wherein the hydrolysis results in the reduction of protein fibrils into smaller peptides, which have broad molecular weight ranges.

Culturing skeletal muscle in vitro has been problematic due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. More...
However, in the current study, investigators at the University of Southern California (Los Angeles) successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks.

To accomplish this advance in culture technology, the investigators utilized micromolded gelatin hydrogels as culture substrates. The hydrogels were thoroughly characterized using atomic force microscopy (AFM).

The investigators reported in the June 28, 2016, online edition of the journal Scientific Reports that compared to polydimethylsiloxane (PDMS) microcontructs printed with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-microprinted PDMS prevented detection of myotubes.

Compared to a softer blend of PDMS microprinted with FN, myogenic index, myotube width, and myotube length on micromolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on micromolded gelatin hydrogels compared to FN-microprinted soft PDMS constructs.

"Disease and disorders involving skeletal muscle - ranging from severe muscular dystrophies to the gradual decrease in muscle mass with aging - dramatically reduce the quality of life for millions of people," said senior author Dr. Megan L. McCain, assistant professor of biomedical engineering at the University of Southern California. "By creating an inexpensive and accessible platform for studying skeletal muscle in the laboratory, we hope to enable research that will usher in new treatments for these patients."

Related Links:
University of Southern California



Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Modular Hemostasis Automation Solution
CN Track
New
Staining Management Software
DakoLink
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.