We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Lack of Cystine Kills Renal Cancer Cells in Mouse Model

By LabMedica International staff writers
Posted on 16 Feb 2016
Restricting access to a specific extracellular nutrient—the amino acid cysteine—caused the death of certain types of renal cancer cells both in culture and in a kidney cancer mouse model.

Being transformed may reprogram a cancer cell's metabolism and addict it to certain very specific extracellular nutrients. More...
Deprivation of these nutrients may therefore represent a therapeutic opportunity, but predicting which nutrients cancer cells become addicted to remains difficult.

Investigators at Duke University (Durham, NC, USA) worked with clear-cell renal cancer cells (ccRCC) that did or did not carry the von Hippel–Lindau tumor suppressor (VHL) gene. They performed a nutrigenetic screen with these cells by deleting each of the 15 amino acids from their growth media, one by one.

They reported in the February 1, 2016, online edition of the journal Cancer Research that cystine deprivation triggered rapid programmed necrosis in VHL-deficient cell lines and primary ccRCC tumor cells, but not in VHL-restored counterparts. Each molecule of cystine is made from two molecules of cysteine, another sulfur-containing amino acid.

VHL normally suppresses the activity of tumor necrosis factor alpha (TNF-alpha). High levels of TNF-alpha activity generate free radicals that are normally degraded by cystine. In VHL mutant cells TNF-alpha was overexpressed and lack of cystine enabled the free radicals to trigger necrosis of the cancer cells. When mice with implanted renal cell carcinoma tumors were treated with sulfasalazine, a drug that blocked cystine uptake, the tumors displayed significantly delayed growth and necrosis.

"We found that the same machinery that makes these tumors so aggressive also makes them vulnerable to nutrient deprivation," said senior author Dr. Jen-Tsan Chi, associate professor of molecular biology and microbiology at Duke University. "It is like we are beating it at its own game. Most chemotherapies kill cancer cells through apoptosis, and the cancer cells that escape apoptosis are the root cause of chemotherapy resistance and tumor progression. Cystine starvation treatments could address resistance by killing cells through a different mechanism."

Related Links:

Duke University



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.