Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Key Finding May Lead to Improved Treatment of Aggressive Brain Cancers

By LabMedica International staff writers
Posted on 20 Jan 2016
Researchers have shown an essential role for the cell microenvironment in the growth of glioblastoma brain cancer cells, a discovery that could lead to a breakthrough in fighting such deadly cancers.

Stem cells found in the tumors are responsible for making glioblastoma hard to treat because they are drug-resistant and self-renewing. More...
A new study, by researchers at the Institute of Bioengineering and Nanotechnology (IBN; Singapore) of Singapore’s Agency for Science, Technology, and Research (A*STAR), is the first to focus on how the extracellular matrix surrounding the tumor affects development of cancer stem-like cells (CSLCs) in a three-dimensional (3D) microenvironment.

“There is currently no cure for glioblastoma, and it is important to eradicate the tumor-initiating cells in order to treat this cancer successfully. By focusing on how the extracellular matrix promotes the development of brain cancer cells, we hope to provide a fresh approach towards tackling the problem, and develop new and more effective therapies,” said IBN executive director Prof. Jackie Y. Ying.

Led by IBN team leader and principal research scientist Dr. Andrew Wan, the researchers studied glioblastoma cell growth in a 3D model using a scaffold of electrospun fibers, compared to in 2D using conventional tissue culture polystyrene plates. The gene and protein expression results showed that the 3D microenvironment promoted the development of brain CSLCs, when compared with the 2D microenvironment.

In particular, they found evidence that two specific types of molecules on the surface of glioblastoma cells, integrin alpha-6 and integrin beta-4, interacted with a specific group of laminin proteins in the extracellular matrix, promoting development of CSLCs. This finding was supported by collaborators at the National Neuroscience Institute using computational approaches to analyze patient tumor and molecular information, which confirmed that these same integrins and laminins were associated with more aggressive brain tumors, particularly grade IV glioblastoma.

“We are excited to have successfully demonstrated that the extracellular matrix and 3D microenvironment work together to affect the stem-like properties in glioblastoma cells. Our finding may also apply to other cell types besides glioblastoma cells, and be used to develop more accurate cancer disease models for drug testing and development. We will conduct further studies with clinical samples from the National Neuroscience Institute, with the goal of improving brain cancer treatment,” said Dr. Wan.

The study, by Ma NKL, Lim JK et al., was published online ahead of print November 26, 2016, in the journal Biomaterials.

Related Links:

Institute of Bioengineering and Nanotechnology



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.