We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Bioengineered Connective Tissue to Promote Development of Treatment Strategies

By LabMedica International staff writers
Posted on 18 Jan 2016
Print article
Image: Heterogeneous tissue engineered constructs reproduce the microstructural, micromechanical, and mechanobiological features of the fibrous and proteoglycan-rich microdomains in native fibrocartilage. Image shows interactions between fibrous (red) and proteoglycan–rich (blue) microdomains after one week of culture (Photo courtesy of Drs. Su Chin Heo and Woojin Han, University of Pennsylvania).
Image: Heterogeneous tissue engineered constructs reproduce the microstructural, micromechanical, and mechanobiological features of the fibrous and proteoglycan-rich microdomains in native fibrocartilage. Image shows interactions between fibrous (red) and proteoglycan–rich (blue) microdomains after one week of culture (Photo courtesy of Drs. Su Chin Heo and Woojin Han, University of Pennsylvania).
New models of the cellular and molecular structure of fibrocartilaginous tissues, such as those comprising the meniscus of the knee, are expected to aid in the development of treatment strategies for injuries and for age or disease-related degeneration.

Treatment strategies to address pathologies of fibrocartilaginous tissue have been limited in part by an incomplete understanding of structure–function relationships in these load-bearing tissues. To correct this problem, investigators at the University of Pennsylvania (Philadelphia, USA) and the University of Delaware (Newark, USA) examined the fine structure of fibrocartilaginous load-bearing tissues.

Among their findings was evidence that the meniscus tissues of knees were comprised of fibrous regions consisting of long, aligned fibers that promoted tissue strength and stiffness. Yet, within the fibrous region there existed small non-fibrous microdomains that had a different composition, with concomitant different mechanical properties.

The investigators described in the January 4, 2016, online edition of the journal Nature Materials the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to movement and pressure. They also described the development of a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and showed that these hetTECs matched the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. This tissue-engineered platform is expected to facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues.

“To be able to probe natural tissue structure-function relationships, we developed micro-engineered models to advance our understanding of tissue development, homeostasis, degeneration, and regeneration in a more controlled manner,” said contributing author Dr. Robert L. Mauck, associate professor of orthopedic surgery and bioengineering at the University of Pennsylvania. “Our tissue-engineered constructs match the structural, mechanical, and biological properties of native tissue during the process of tissue formation and degeneration. Essentially, we are working to engineer tissues not just to provide healthy replacements, but also to better understand what is happening to cause degeneration in the first place. This engineered disease model will enable the development of new treatments for degenerative disease in numerous types of connective tissues.”

Related Links:

University of Pennsylvania
University of Delaware


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.