We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

By LabMedica International staff writers
Posted on 26 Aug 2025

About 37 million U. More...

S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient. Researchers have now developed a new approach that uses a simple breath sample to provide results in minutes, offering a fast and inexpensive method to identify both diabetes and prediabetes.

The innovation comes from Penn State (University Park, PA, USA), where scientists have designed a graphene-based breath sensor. The device detects acetone, a natural byproduct of fat metabolism, exhaled in breath. Everyone produces acetone, but levels above 1.8 parts per million indicate diabetes risk. Unlike earlier glucose sensors that required sweat or lab analysis, this method only needs a patient to exhale into a bag for quick on-site results.

The sensor was built using laser-induced graphene, a porous material created by burning polyimide film with a CO₂ laser. To improve selectivity, the researchers combined graphene with zinc oxide, forming a junction that made the sensor more effective at detecting acetone molecules. A special membrane was also added to block water vapor, which could otherwise interfere with readings.

Currently, patients must breathe into a bag to ensure accurate measurements without interference from environmental airflow. The study, published in Chemical Engineering Journal, confirmed the sensor could reliably detect acetone levels linked to diabetes and prediabetes. This proof-of-concept demonstrates a potential noninvasive alternative to blood-based diagnostics.

Going forward, the researchers aim to design a version of the sensor that works directly under the nose or inside a mask. They also see opportunities to expand its use, such as monitoring how acetone levels fluctuate with diet and exercise. Such insights could broaden the device’s applications beyond diabetes to general health tracking.

“While we have sensors that can detect glucose in sweat, these require exercise, chemicals, or a sauna, which are not always practical,” said Huanyu “Larry” Cheng, associate professor of engineering science and mechanics at Penn State. “This sensor only requires that you exhale into a bag, dip the sensor in, and wait a few minutes for results.”

Related Links:
Penn State


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The world’s largest metabolomic dataset sets the stage for pinprick tests to predict disease years before symptoms (Photo courtesy of Nightingale Health)

Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear

Many serious conditions begin silently years before symptoms appear, yet routine screening rarely detects these early physiological shifts. A powerful new solution is emerging: pinprick blood tests driven... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.