We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Reprogrammed Skin Cells Produce Insulin and Prevent Diabetes in Mouse Model

By LabMedica International staff writers
Posted on 17 Jan 2016
Advances in chemical and genetic methods for cellular reprogramming have enabled researchers to convert human skin cells (fibroblasts) into fully functional pancreatic beta cells.

Investigators at the University of California, San Francisco (USA) began by nudging human fibroblasts towards an endodermal cell fate by employing non-integrative episomal reprogramming factors in combination with specific growth factors and chemical compounds. More...
On initial culture, converted definitive endodermal progenitor cells (cDE cells) were channeled into becoming posterior foregut-like progenitor cells (cPF cells). The cPF cells and their derivatives, pancreatic endodermal progenitor cells (cPE cells), were then greatly expanded (by more than a trillion-fold) in mass culture.

A screening approach enabled the investigators to identify chemical compounds that promoted the differentiation and maturation of cPE cells into functional pancreatic beta-like cells (cPB cells) in vitro.

Populations of cPB cells were transplanted into mice, and the investigators reported in the January 6, 2016, online edition of the journal Nature Communications that these cells exhibited glucose-stimulated insulin secretion in vivo and protected the mice from chemically induced diabetes.

The results obtained during this study have important implications for future strategies aimed at generating high numbers of functional beta cells, which may help restoring glucose balance in patients suffering from diabetes.

Senior author Dr. Sheng Ding, professor of pharmaceutical chemistry at the University of California, San Francisco, said, "This new cellular reprogramming and expansion paradigm is more sustainable and scalable than previous methods. Using this approach, cell production can be massively increased while maintaining quality control at multiple steps. This development ensures much greater regulation in the manufacturing process of new cells. Now we can generate virtually unlimited numbers of patient-matched insulin-producing pancreatic cells."

Related Links:

University of California, San Francisco



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Hand-Held Immunofluorescence Analyzer
WS-Si1500
New
PlGF Test
Quidel Triage PlGF Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.