We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Deleting the Dicer DNA-Repair Enzyme Increases Sensitivity of Cancer Cells to Chemotherapy

By LabMedica International staff writers
Posted on 12 Jan 2016
Blocking the activity of the enzyme Dicer in rapidly growing cancer cells prevents them from correcting DNA damage, which renders them more sensitive to the action of chemotherapeutic drugs.

Dicer, also known as endoribonuclease Dicer or helicase with RNase motif, is an enzyme that in humans is encoded by the DICER1 gene. More...
Being part of the RNase III family, Dicer cleaves double-stranded RNA (dsRNA) and pre-microRNA (pre-miRNA) into short double-stranded RNA fragments called small interfering RNA and microRNA, respectively. In 2012 it was found that in addition to its effects on RNA, Dicer had a direct role of in repairing DNA damage.

To expand on findings linking Dicer to DNA repair, investigators at the University of North Carolina (Chapel Hill, USA) deleted Dicer in preclinical mouse models of medulloblastoma, a common type of brain cancer in children, and from the normal, rapidly dividing developing brain cells in the mouse cerebellum.

They reported in the December 31, 2015, online edition of the journal Cell Reports that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in the mouse model of medulloblastoma. In the Dicer-deficient medulloblastoma mice, the tumor load was lower than in control animals, and the cancer cells were more sensitive to chemotherapy.

“This is the first time that the specific function of Dicer for DNA damage has been looked at in the context of the developing brain or even in brain tumors, despite that the fact that the protein has been extensively studied,” said senior author Dr. Mohanish Deshmukh, professor of cell biology and physiology at the University of North Carolina. “We have found that targeting Dicer could be an effective therapy to either prevent cancer development or to actually sensitize tumors to chemotherapy. We are excited about these results because of the implication that Dicer inhibitors could be developed as a potential therapy for treating rapidly dividing tumors like medulloblastoma.”

Related Links:

University of North Carolina 



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Serological Pipet Controller
PIPETBOY GENIUS
New
Staining System
RAL DIFF-QUIK
New
Silver Member
Quality Control Material
Multichem ID-B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.