We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Maintenance of a Stable Karyotype Depends on Action of a Long Noncoding RNA

By LabMedica International staff writers
Posted on 05 Jan 2016
Print article
Image: Model of the PUMILIO protein family member PUM1 (pumilio RNA binding family member 1) (Photo courtesy of Wikimedia Commons).
Image: Model of the PUMILIO protein family member PUM1 (pumilio RNA binding family member 1) (Photo courtesy of Wikimedia Commons).
A long noncoding RNA (lncRNA) regulates cellular genomic stability by sequestering the PUMILIO proteins, which would otherwise drive chromosomal instability by repressing mitotic, DNA repair, and DNA replication factors.

Long noncoding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) described the initial functional analysis of a poorly characterized human lncRNA (LINC00657) that was induced after DNA damage. The investigators called this class of RNA “noncoding RNA activated by DNA damage”, or NORAD.

They reported in the December 24, 2015, online edition of the journal Cell that NORAD was highly conserved and abundant, with expression levels of approximately 500–1,000 copies per cell. Unexpectedly, inactivation of NORAD was found to trigger the dramatic development of aneuploidy in previously karyotypically stable cell lines.

The investigators showed that NORAD maintained genomic stability by sequestering the PUMILIO proteins PUM1 and PUM2 (pumilio RNA binding family member 1 and pumilio RNA binding family member 2), which repressed the stability and translation of mRNAs to which they bound. In the absence of NORAD, PUMILIO proteins drove chromosomal instability by repressing mitotic, DNA repair, and DNA replication factors.

"In the absence of the NORAD RNA, the number of chromosomes in cells becomes highly abnormal," said senior author Dr. Joshua Mendell, professor of molecular biology at the University of Texas Southwestern Medical Center. "This is an entirely new function for a noncoding RNA and may have implications in cancer biology since genomic instability is a hallmark of tumor cells."

Related Links:
University of Texas Southwestern Medical Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.