We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Small Molecule Innate Immune System Stimulators Show Promise as Broad-Spectrum Antiviral Drugs

By LabMedica International staff writers
Posted on 29 Dec 2015
A family of low molecular weight compounds has been identified that activates the innate immune system to stimulate broad-spectrum protection against viral infections.

The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen associated molecular patterns (PAMPs). More...
This process results in induction of downstream signaling pathways that activate the transcription factor IRF3 (interferon regulatory factor 3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type I interferon, and immune modulatory cytokines that act in concert to restrict virus replication.

Investigators at the University of Washington (Seattle, USA) and their colleagues at the University of Texas Medical Branch (Galveston, USA), and the biotechnology company Kineta Inc. (Seattle, WA, USA) theorized that small molecule agonists that promoted IRF3 activation and induced innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection.

To this end they tested representative compounds and derivatives from a hydroxyquinoline family of small molecules for the ability to suppress infection by a broad range of RNA viruses. They reported in the December 16, 2015, online edition of the Journal of Virology that these molecules could prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses including West Nile virus, Dengue virus, Hepatitis C virus, influenza A virus, respiratory syncytial virus (RSV), Nipah virus, Lassa virus, and Ebolavirus.

"Our study shows that our compound has an antiviral effect against all these viruses," said senior author Dr. Michael Gale Jr., professor of immunology at the University of Washington.

Knockdown studies mapped this response to the RIG-I-like receptor pathway. RIG-I is a cellular protein known as pathogen recognition receptor. These receptors function to detect viral RNA and signal an innate immune response inside the cell that is essential for limiting and controlling viral infections. This signaling then induces the expression of many innate immune and antiviral genes and the production of antiviral gene products, pro-inflammatory cytokines, chemokines and interferons.

Contributing author Dr. Shawn Iadonato, CSO at Kineta, said, "There is tremendous interest in triggering innate immunity for a number of reasons. One is because some viral infections cannot be treated by traditional antivirals, such as chronic hepatitis B infection. Also, by triggering innate immunity, the viruses will be much less likely to resist the drug actions because they are targeted to the cell through the actions of many different genes and not to the virus itself, thus making drug resistance much harder if not impossible to achieve. It is routine for us to think of broad-spectrum antibiotics, but the equivalent for virology does not exist."

Related Links:

University of Washington
University of Texas Medical Branch
Kineta Inc.



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.