We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




MicroRNA Defect Triggers Motor Neuron Disease Symptoms in Mouse Model

By LabMedica International staff writers
Posted on 28 Dec 2015
A team of neurobiologists working with a mouse model has shown how the loss of a single microRNA (miRNA) caused newborn mice to die at birth while exhibiting symptoms of neuromuscular junction defects similar to those seen in human motor neuron diseases.

MicroRNAs are a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. More...
With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. One miRNA, miR-218, is abundantly and selectively expressed by developing and mature motor neurons (motoneurons).

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) used the CRISPR-Cas9 gene editing technique to precisely eliminate those sections of DNA in the mouse genome that were responsible for generating miR-218.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. The CRISPR/Cas complex comprises a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location.

The investigators reported in the December 18, 2015, issue of the journal Science that mutant mice lacking miR-218 died neonatally and exhibited neuromuscular junction defects, motoneuron hyperexcitability, and progressive motoneuron cell loss, all of which are hallmarks of motoneuron diseases such as amyotrophic lateral sclerosis (AML) and spinal muscular atrophy (SMA).

Gene profiling revealed that when functioning normally miR-218 modestly repressed a cohort of hundreds of genes that were neuronally enriched but are not specific to a single neuron subpopulation. Thus, the set of messenger RNAs targeted by miR-218 defined a neuronal gene network that was selectively tuned down in motoneurons to prevent neuromuscular failure and neurodegeneration.

"MicroRNAs that have previously been studied have been predominantly associated with defects in the development of nerve cells, called neurogenesis. And that is really what most people would expect to happen with our microRNA," said senior author Dr. Samuel Pfaff, professor of neurobiology at the Salk Institute for Biological Studies. "However, the neurogenesis in our experiment was completely intact. MicroRNAs are not dramatic on-off switches of genes in the cell in the way we think about other genetic regulators. Instead, microRNAs are the fine-tuning control of gene activity—another reason their role in cells has been harder to pinpoint."

"This really does open a new world of possibilities to another approach to understanding neurodegenerative diseases like these," said Dr. Plaff. "It breaks down a few common preconceptions about what microRNAs do in the nervous system, and that opens doors for people to start studying microRNAs as a class of molecules that might have significant links to many types of neurodegenerative disorders."

Related Links:

Salk Institute for Biological Studies 



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Staining System
RAL DIFF-QUIK
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.