We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cultured Liver Cells Now Available for Research Applications

By LabMedica International staff writers
Posted on 08 Dec 2015
Print article
Image: Polarized fluorescent micrograph showing hepatocytes generated by the upcyte technique (Photo courtesy of Dr. Yaakov Nahmias, Hebrew University of Jerusalem, Israel).
Image: Polarized fluorescent micrograph showing hepatocytes generated by the upcyte technique (Photo courtesy of Dr. Yaakov Nahmias, Hebrew University of Jerusalem, Israel).
An advance in cell culture technology will enable researchers to maintain liver cells (hepatocytes) in culture for up to 40 replication cycles, which will provide important study material for research, clinical applications, and pharmaceutical development.

Hepatocytes have a critical role in the metabolism of an organism, but their study is limited by the inability to expand primary hepatocytes in vitro while maintaining proliferative capacity and metabolic function. Heretofore, attempts to expand human hepatocytes in the laboratory have generated immortalized cancer cells with little metabolic function.

Recently, investigators at the Hebrew University of Jerusalem (Israel) and their colleagues at the biotechnology company upcyte technologies GmbH (Hamburg, Germany) described a process for growing in vitro cultures of human hepatocytes.

They reported in the October 26, 2015, online edition of the journal Nature Biotechnology that weak expression of the E6 and E7 genes from human papilloma virus (HPV) released hepatocytes from cell-cycle arrest and allowed them to proliferate in response to stimulation by Oncostatin M (OSM), a member of the interleukin 6 (IL-6) super family of cytokines, which is involved in liver regeneration. This procedure has been dubbed the "upcyte" technique.

Stimulation of cultures with OSM according to the upcyte procedure caused cell proliferation, with doubling time of 33 to 49 hours. Removal of OSM then caused growth arrest and hepatic differentiation within four days, generating populations of 1013 to 1016 highly functional liver cells from a single human hepatocyte isolate.

Differentiated hepatocytes showed transcriptional and toxicity profiles and cytochrome P450 induction similar to those of primary human hepatocytes. Replication and infectivity of Hepatitis C virus (HCV) in differentiated hepatocytes were similar to those of Huh7.5.1 human hepatoma cells.

“The approach is revolutionary,” said contributing author Dr. Joris Braspenning, CSO of upcyte technologies GmbH. “Its strength lies in our ability to generate liver cells from multiple donors, enabling the study of patient-to-patient variability and idiosyncratic toxicity.”

“This is the holy grail of liver research,” said senior author Dr. Yaakov Nahmias, professor of bioengineering at the Hebrew University of Jerusalem. “Our technology will enable thousands of laboratories to study fatty liver disease, viral hepatitis, drug toxicity, and liver cancer at a fraction of the current cost. Genetic modifications preclude using the cells for transplantation, but we may have found the perfect cell source for the bio-artificial liver project.”

Related Links:

Hebrew University of Jerusalem 
upcyte technologies GmbH


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.