Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Advances in Stem Cell Technology Boost Efforts to Develop a Biological Pacemaker

By LabMedica International staff writers
Posted on 06 Dec 2015
A recent review article summarized the progress being made in the endeavor to develop permanent biological pacemakers to replace the currently used electronic heart pacemakers, which require regular maintenance and periodic replacement.

The sinoatrial node (SAN), which is located in the right atrium of the heart, is the organ's pacemaker and is responsible for the initiation of the heartbeat. More...
The SAN spontaneously generates an electrical impulse, which after traveling throughout the heart causes the muscle to contract. Although the electrical impulses are generated spontaneously, the rate of the impulses (and therefore the heart rate) is set by the nerves innervating the SAN.

Irreversible degeneration of the cardiac conduction system is a common disease that can cause activity intolerance, fainting, and death. While electronic pacemakers provide effective treatment, alternative approaches are needed when long-term indwelling hardware is undesirable. Biological pacemakers comprise electrically active cells that functionally integrate with the heart. Recent findings on cardiac pacemaker cells (PCs) within the SAN, along with developments in stem cell technology, have opened a new era in biological pacing.

A review of the field was published in the November 19, 2015, online edition of the journal Trends in Molecular Medicine. Among other advances discussed in the review were two approaches for development of a biological pacemaker: (1) directing stem cells to become specialized SAN pacemaker cells that could be transplanted into an ailing heart to restore pacemaking function and (2) direct reprogramming of supporting cells already present in the heart to convert them into pacemaker cells.

To continue with both approaches investigators will need to better understand the mechanisms controlling the development and maintenance of pacemaker cells in the SAN, and they must develop methods for comparing experimental biological pacemaker tissue with bona fide SAN tissue. Also, researchers will need to improve the methods used to deliver cells to desired locations within the heart, as well as the recovery of specific individual cells for detailed characterization and functional analyses.

"Theoretically, biological pacemakers, which are composed of electrically active cells that can functionally integrate with the heart, could provide natural heart rhythm regulation without the need for indwelling hardware," said review author Dr. Vasanth Vedantham, assistant professor of medicine at the University of California, San Francisco (USA). "Biological pacemakers must meet a very high standard of performance to supplant electronic pacemakers. Because even a few seconds without a heartbeat can lead to serious consequences, a biological pacemaker would need to exhibit very robust and reliable performance. It remains to be determined whether this will be technically feasible. Despite such challenges, the field is poised for rapid progress over the next few years."

Related Links:

University of California, San Francisco



New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.