We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Platelet Membrane-Coated Nanoparticles Kill Circulating Tumor Cells and Prevent Metastasis in Breast Cancer Model

By LabMedica International staff writers
Posted on 25 Nov 2015
Silica nanoparticles functionalized with activated platelet membranes along with surface conjugation of the tumor-specific apoptosis-inducing ligand cytokine TRAIL were shown to facilitate the destruction of circulating tumor cells (CTCs) and prevent the spread of the disease in a mouse breast cancer metastasis model.

Investigators at Cornell University (Ithaca, NY, USA) had shown in previous studies that (CTCs) became part of a "microenvironment" when they became physically associated with activated platelets and fibrin while being transported in the bloodstream.

To attack the tumor cells within this microenvironment, the investigators prepared synthetic silica nanoparticles coated with proteins from activated platelet membranes. More...
Molecules of the cytokine TRAIL (tumor necrosis factor related apoptosis-inducing ligand) were attached to the surface of the particles.

TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anti-cancer drugs, but had not been found to have any significant survival benefit.

The investigators reported in the October 21, 2015, online edition of the journal Biomaterials that their synthetic nanoparticles attached to "natural killer cells" in the blood which then became incorporated into CTC-associated micro-thrombi in blood vessels within the lungs. The ramped-up killer cells acted to dramatically decrease lung metastases in a mouse breast cancer metastasis model.

"In our research, we use nanoparticles— the liposomes we have created with TRAIL protein—and attach them to natural killer cells, to create what we call "super natural killer cells" and then these completely eliminate lymph node metastases in mice," said senior author Dr. Michael R. King, professor of biomedical engineering at Cornell University. "So, now we have technology to eliminate bloodstream metastasis—our previous work—and also lymph node metastases."

Related Links:

Cornell University




New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Hemodynamic System Monitor
OptoMonitor
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.