Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Transcription Factor Inhibitors Block Growth of Lethal Brain Tumor

By LabMedica International staff writers
Posted on 10 Nov 2015
A new approach for treating the deadly brain tumor glioblastoma multiforme (GBM) is based on small molecule inhibitors of the major class of protein signaling molecules known as transcription factors (TFs), which are essential for tumor survival and growth.

Transcription factors are a major class of protein signaling molecules that play critical cellular roles in cancers, such as the highly lethal brain cancer GBM. More...
Although TFs are promising targets for drug intervention, the development of specific TF inhibitors has proved difficult owing to expansive protein-protein interfaces and the absence of hydrophobic pockets.

OLIG2 is a basic helix-loop-helix (bHLH) TF that is critical in tumorigenesis and regulates the survival and expansion of GBM. It is highly expressed in all diffuse gliomas and nearly 100% of glioma cancer stem cells (CSCs) that are positive for the CD133 stem cell marker. Typically, OLIG2 is not active in normal brain tissue and it is not found in normal tissues outside the central nervous system (CNS). The over-expression of OLIG2 in GBM cells inhibits cellular differentiation and apoptosis as well as promotes resistance to chemotherapy and radiation therapy.

Investigators at the University of California, San Diego (USA) utilized a novel combined pharmacophore-based small molecule design methodology, to identify several candidate TF inhibitors. A number of these compounds demonstrated selective OLIG2 pathway inhibition and in vitro anti-GBM potency in biochemical, cell-based, and reporter assays.

The investigators reported in the October 30, 2015, online edition of the journal Oncotarget that the most active compound, SKOG102, was OLIG2 selective. The drug entered the brain and exhibited potent anti-GBM activity in cell-based assays and in pre-clinical mouse GBM models, where it shrank transplanted human glioblastoma tumors by an average of 50%.

"Most drugs target stable pockets within proteins, so when we started out, people thought it would be impossible to inhibit the transient interface between two transcription factors," said first author Dr. Igor Tsigelny, senior program project scientist at the University of California, San Diego. "But we addressed this challenge and created a new strategy for drug design - one that we expect many other researchers will immediately begin implementing in the development of drugs that target similar proteins, for the treatment of a variety of diseases."

SKOG102 will now undergo detailed pharmacodynamic, biophysical, and mechanistic studies in order to better understand its efficacy and possible toxicity. To this end, the compound has been licensed to the drug development company Curtana Pharmaceuticals (Austin, TX, USA), which will groom the inhibitor for clinical applications.

Related Links:
University of California, San Diego
Curtana Pharmaceuticals



New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.