We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Transcription Factor Inhibitors Block Growth of Lethal Brain Tumor

By LabMedica International staff writers
Posted on 10 Nov 2015
A new approach for treating the deadly brain tumor glioblastoma multiforme (GBM) is based on small molecule inhibitors of the major class of protein signaling molecules known as transcription factors (TFs), which are essential for tumor survival and growth.

Transcription factors are a major class of protein signaling molecules that play critical cellular roles in cancers, such as the highly lethal brain cancer GBM. More...
Although TFs are promising targets for drug intervention, the development of specific TF inhibitors has proved difficult owing to expansive protein-protein interfaces and the absence of hydrophobic pockets.

OLIG2 is a basic helix-loop-helix (bHLH) TF that is critical in tumorigenesis and regulates the survival and expansion of GBM. It is highly expressed in all diffuse gliomas and nearly 100% of glioma cancer stem cells (CSCs) that are positive for the CD133 stem cell marker. Typically, OLIG2 is not active in normal brain tissue and it is not found in normal tissues outside the central nervous system (CNS). The over-expression of OLIG2 in GBM cells inhibits cellular differentiation and apoptosis as well as promotes resistance to chemotherapy and radiation therapy.

Investigators at the University of California, San Diego (USA) utilized a novel combined pharmacophore-based small molecule design methodology, to identify several candidate TF inhibitors. A number of these compounds demonstrated selective OLIG2 pathway inhibition and in vitro anti-GBM potency in biochemical, cell-based, and reporter assays.

The investigators reported in the October 30, 2015, online edition of the journal Oncotarget that the most active compound, SKOG102, was OLIG2 selective. The drug entered the brain and exhibited potent anti-GBM activity in cell-based assays and in pre-clinical mouse GBM models, where it shrank transplanted human glioblastoma tumors by an average of 50%.

"Most drugs target stable pockets within proteins, so when we started out, people thought it would be impossible to inhibit the transient interface between two transcription factors," said first author Dr. Igor Tsigelny, senior program project scientist at the University of California, San Diego. "But we addressed this challenge and created a new strategy for drug design - one that we expect many other researchers will immediately begin implementing in the development of drugs that target similar proteins, for the treatment of a variety of diseases."

SKOG102 will now undergo detailed pharmacodynamic, biophysical, and mechanistic studies in order to better understand its efficacy and possible toxicity. To this end, the compound has been licensed to the drug development company Curtana Pharmaceuticals (Austin, TX, USA), which will groom the inhibitor for clinical applications.

Related Links:
University of California, San Diego
Curtana Pharmaceuticals



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology System
Medonic M16C
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.