We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




MicroRNAs Shown to Control Lipid and Cholesterol Metabolism in Mouse Models

By LabMedica International staff writers
Posted on 08 Nov 2015
A group of microRNAs was identified as modulators of lipid and cholesterol metabolism in two mouse models and may serve as targets for drugs designed to protect against cardiovascular diseases.

MicroRNAs (miRNAs) are fragments of RNA about 20 nucleotides long that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

Investigators at the Harvard Medical School (Boston, MA, USA) had found previously that the microRNA miR-33 suppressed production of beneficial HDL cholesterol and that antisense blocking of miR-33 increased HDL levels in an animal model.

In the current study, which was published in the October 26, 2015, online edition of the journal Nature Medicine, the investigators reviewed genome-wide association studies involving more than 188,000 individuals. More...
This review yielded 69 microRNAs that were coded by gene loci known to be associated with lipid abnormalities.

Using a tool that predicted the targets of microRNAs based on matches between their nucleotide sequences and those of protein-coding genes and a database of identified gene functions, the investigators identified four microRNAs that appeared to control genes involved in cholesterol and triglyceride levels and in other metabolic functions, such as glucose metabolism.

Two of the microRNAs, miR-128-1 and miR-148a, were found to control the expression of proteins essential to the regulation of cholesterol/lipid levels in cells growing in culture and in high-fat diet-fed C57BL/6J and Apoe-null mouse models. The microRNA miR-128-1 was also found to regulate fatty liver deposits, insulin signaling, and maintenance of blood sugar levels.

"While we and others have recently identified microRNAs that control cholesterol and fat metabolism and trafficking, no studies to date have systematically looked at all non-coding factors, such as microRNAs, in genetic studies of human diseases and other traits," said senior author Dr. Anders Naar, professor of cell biology at Harvard Medical School. "Using human genetic data from almost 190,000 individuals, we have linked 69 microRNAs to increased genetic risk for abnormal cholesterol and triglyceride levels, and showed that four of these act to control proteins we know are involved in those metabolic activities. We are following up these findings with studies to address whether antisense blocking of these microRNAs could decrease atherosclerosis, cardiovascular disease, and inflammatory fatty liver diseases in animals. We hope these findings will lead to new, more effective ways of treating or even preventing cardiovascular disease and other metabolic disorders."

Related Links:

Harvard Medical School



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
DNA/RNA Extraction/Purification Kit
Nucleic Acid Extraction or Purification Kit
New
Anti-Thyroid Peroxidase Assay
LIAISON Anti-TPO
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: New research brings hope for improved early detection of pancreatic cancer (Photo courtesy of Adobe Stock)

New Biomarker Panel to Enable Early Detection of Pancreatic Cancer

Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.