We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Lymphocyte Membrane Antigen Receptors Reside in Discrete Protein Islands

By LabMedica International staff writers
Posted on 27 Sep 2015
Print article
Image: Researchers previously assumed that receptors such as the antigen receptors of class Immunoglobulin M and Immunoglobulin D are freely diffusing and equally distributed molecules on the membrane. However, the new study shows that these antigen receptors are organized in different membrane compartments, also called \"protein islands\", with diameters of 150–200 nanometers (Photo courtesy of Reth Research Group, BIOSS Centre for Biological Signaling Studies of the University of Freiburg).
Image: Researchers previously assumed that receptors such as the antigen receptors of class Immunoglobulin M and Immunoglobulin D are freely diffusing and equally distributed molecules on the membrane. However, the new study shows that these antigen receptors are organized in different membrane compartments, also called \"protein islands\", with diameters of 150–200 nanometers (Photo courtesy of Reth Research Group, BIOSS Centre for Biological Signaling Studies of the University of Freiburg).
By applying several advanced imaging techniques, researchers have resolved the distribution of B-cell antigen receptors on the membranes of immune system lymphocytes.

The B-cell antigen receptors (BCRs) play an important role in the clonal selection of B-cells and their differentiation into antibody-secreting plasma cells. Mature B-cells have both immunoglobulin M (IgM) and IgD types of BCRs, which have identical antigen-binding sites and are both associated with the signaling subunits Ig-alpha and Ig-beta, but differ in their membrane-bound heavy chain isoforms.

Investigators at the BIOSS Centre for Biological Signaling Studies of the University of Freiburg (Germany) applied, two-color direct stochastic optical reconstruction microscopy (dSTORM), transmission electron microscopy (TEM), and the Fab-based proximity-ligation assay (Fab-PLA) to resolve the location and distribution of BCRs in the mature lymphocyte membrane.

Results published in the September 15, 2015, issue of the journal Science Signaling revealed that in contrast to the assumption that BCRs—like all proteins in the membrane—were freely diffusing molecules, dSTORM showed that IgM-BCRs and IgD-BCRs resided in the plasma membrane in different protein islands with average sizes of 150 and 240 nanometers, respectively. Upon B-cell activation, the BCR protein islands became smaller and more dispersed such that the IgM-BCRs and IgD-BCRs were found in close proximity to each other. Moreover, specific stimulation of one class of BCR had minimal effects on the organization of the other. These conclusions were supported by the findings from two-marker transmission electron microscopy and proximity ligation assays.

These results provide direct evidence for the nanoscale compartmentalization of the lymphocyte membrane. In addition, they suggest that upon B-cell activation, the different IgM and IgD protein islands form complexes, which allow the exchange of lipids and proteins. This could be the basis for the association of IgM with Raft-associated lipids and proteins, which is a well-known hallmark of B-cell activation.

The current study was a component of the University of Frieberg's BIOSS nanoscale explorer program (BiNEP), which is dedicated to developing better methods to resolve nano-structures that are smaller than the 250 nanometer diffraction limit of visible light.

Related Links:
BIOSS Centre for Biological Signaling Studies of the University of Freiburg


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.