We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Synthetic Biologists Create Interlinked Microbial Populations

By LabMedica International staff writers
Posted on 09 Sep 2015
A team of synthetic biologists has demonstrated a method for controlling how populations of microbial cells interact and regulate each other.

A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. More...
Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types.

In an attempt to create such a system artificially, investigators at Rice University (Houston, TX, USA) constructed a synthetic microbial consortium from genetically engineered populations of E. coli that comprised two distinct cell types—an “activator” strain and a “repressor” strain. The activator strain upregulated the expression of targeted genes while the repressor strain downregulated the same genes. The bacteria, which were grown in microfluidic culture devices, had been engineered to synthesize fluorescent reporter genes so their activities could be monitored.

Results published in the August 28, 2015, issue of the journal Science revealed that the strains produced two orthogonal cell-signaling molecules that regulated gene expression within a synthetic circuit spanning both strains. Of particular interest was the observation that the two strains generated emergent, population-level oscillations only when cultured together.

"The main push in synthetic biology has been to engineer single cells," said senior author Dr. Matthew R. Bennett, assistant professor of biochemistry and cell biology at Rice University. "But now we are moving toward multicellular systems. We want cells to coordinate their behaviors in order to elicit a populational response, just the way our bodies do. We have many different types of cells in our bodies, from skin cells to liver cells to pancreatic cells, and they all coordinate their behaviors to make us work properly. To do this, they often send out small signaling molecules that are produced in one cell type and effect change in another cell type. We take that principle and engineer it into these very simple organisms to see if we can understand and build multicellular systems from the ground up."

Related Links:

Rice University



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
Serological Pipet Controller
PIPETBOY GENIUS
New
Modular Hemostasis Automation Solution
CN Track
New
DNA/RNA Extraction/Purification Kit
Nucleic Acid Extraction or Purification Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: New research brings hope for improved early detection of pancreatic cancer (Photo courtesy of Adobe Stock)

New Biomarker Panel to Enable Early Detection of Pancreatic Cancer

Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.