Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Method for In Vitro Neuron Culture Will Advance Serotonin Research

By LabMedica International staff writers
Posted on 24 Aug 2015
A method has been developed that enables human serotonin-producing neurons, generated from transformed fibroblasts, to be grown in culture for use as a tool for research and drug discovery on many serotonin-related mental disorders.

Serotonergic (5HT) neurons exert diverse and widespread functions in the brain. More...
Malfunctions of the serotonergic system give rise to a variety of mental illnesses including depression, anxiety, obsessive compulsive disorder, autism, and eating disorders. Up to now, it has not been possible to grow cultures of human serotonin-producing neurons in the laboratory, so studies have been carried out on animals.

A technological breakthrough devised by researchers at the University at Buffalo (NY, USA) has changed this picture. They demonstrated a method for directly converting human primary fibroblasts into induced serotonergic (i5HT) neurons. This was accomplished by growing fibroblasts in medium to which the genes for the proteins Ascl1 (Achaete-scute homolog 1), Foxa2 (forkhead box protein A2), Lmx1b (LIM homeobox transcription factor 1-beta), and FEV (a gene exclusively expressed in neurons of the central serotonin (5-HT) system) had been added. The transformation process was enhanced by inhibiting the gene for p53 and maintaining appropriate culture conditions including hypoxia.

Results published in the July 28, 2015, online edition of the journal Molecular Psychiatry revealed that the i5HT neurons expressed markers for mature serotonergic neurons, had calcium ion dependent 5HT release and selective 5HT uptake, exhibited spontaneous action potentials and spontaneous excitatory postsynaptic currents. Application of serotonin significantly increased the firing rate of spontaneous action potentials, demonstrating the functional utility of i5HT neurons for studying serotonergic neurotransmission.

“This research shows that it is possible to convert one type of cell into other types that have been difficult to access, such as neurons or heart cells,” said senior author Dr. Jian Feng, professor of physiology and biophysics at the University at Buffalo. “All we need to do is find out the combination of transcription factors that is necessary. Sooner or later, we will find out what those combinations are so that we can regenerate cells and eventually tissues that will mimic the real cells and tissues in the body.”

“These patient-specific serotonin neurons will be very useful to the discovery of new drugs for diseases ranging from depression and anxiety to obsessive-compulsive disorder and many others,” said Dr. Feng. “They will not only allow researchers to study why certain individuals develop a disease but also to find out what can be done to treat it.”

Related Links:

University at Buffalo



New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.