We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Hydrogel-Embedded 3-D Scaffold Provides Superior Matrix for Culture of Captured Circulating Tumor Cells

By LabMedica International staff writers
Posted on 17 Aug 2015
Findings obtained by a proof-of-concept study suggested that isolated circulating tumor cells (CTCs) could be induced to grow on three-dimensional scaffolding embedded into a rehydrated hydrogel matrix where they were available for study, manipulation, and transplant.

Improvements in microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare CTCs for diagnostic and prognostic purposes. More...
However, the characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity.

Investigators at Massachusetts General Hospital (Boston, USA) and their colleagues at Florida State University (Tallahassee, USA) and the University of Massachusetts (Amherst, USA) devised a strategy to substantially improve recovery of CTCs by using a three-dimensional scaffold integrated into a microfludic device. The transferable substrate was readily isolated after device operation for serial use in vivo as a transplanted tissue bed.

In a proof-of-concept study, a dry hydrogel scaffold was inserted into a capture chamber within the fluidic device and then rehydrated to fill the void volume of the capture chamber. Computational modeling was used to define different flow and pressure regimes that guided the conditions used to operate the chip. A cell suspension containing a prostate tumor cell line was used to verify that cancer cells would attach to the hydrogel matrix, which could be directly visualized under a microscope, and grow under these conditions.

Results published in the June 23, 2015, online edition of the journal Technology confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development.

"Companion models of circulating tumor cells can be a practical test bed to gain insight about new mutations and drug sensitivity of metastatic cells that can apply to patient care. This proof-of-concept study adds a new dimension to this important effort," said senior author Dr. Biju Parekkadan, assistant professor of surgery at Massachusetts General Hospital.

Related Links:

Massachusetts General Hospital
Florida State University
University of Massachusetts



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.