We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Neuroscience Research to Benefit from 3-D Printing of Brain-Like Structures

By LabMedica International staff writers
Posted on 12 Aug 2015
Advanced three-dimensional printing techniques were used to generate a biological construct that incorporated neural cells and mimicked brain cell activities for use in applications ranging from cell behavior studies to improving understanding of brain injuries and neurodegenerative diseases.

Researchers have attempted to study the brain by modeling the architecture using two dimensional (2-D) in vitro cell culturing methods. More...
While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3-D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to understanding the functioning of the brain at the tissue or organ level.

Investigators at the ARC Centre of Excellence for Electromaterials Science (North Wollongong, NSW, Australia) applied a 3-D printing approach to the problem of developing a useful in vitro brain model. They reported in the July 14, 2015, online edition of the journal Biomaterials that they had developed a new method to bioprint 3-D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels.

Brain-like structures were constructed with a Stratasys Ltd. (Rehovot, Israel) Connex Objet350 3D printer using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore, the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. Neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix.

"This study highlights the importance of integrating advances in 3-D printing, with those in materials science, to realize a biological outcome," said senior author Dr. Gordon Wallace, head of the ARC Centre of Excellence for Electromaterials Science.

"This paves the way for the use of more sophisticated printers to create structures with much finer resolution. We are still a long way from printing a brain but the ability to arrange cells so as they form neuronal networks is a significant step forward."

Related Links:

ARC Centre of Excellence for Electromaterials Science
Stratasys Ltd.



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Staining System
RAL DIFF-QUIK
New
Automated PCR Setup
ESTREAM
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The new study aims to enhance colorectal cancer prevention by identifying polyp molecular signals (Photo courtesy of Shutterstock)

RNA Screening Test Could Detect Colon Polyps Before They Become Cancerous

Colorectal cancer has become a growing health crisis, especially as it increasingly affects younger adults in their 20s, 30s, and 40s, while screening rates remain low. Colorectal cancer is now the leading... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.