We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Bone Marrow Transplantation Techniques Are Successfully Adapted for Lung Repair

By LabMedica International staff writers
Posted on 29 Jul 2015
A new approach for repairing the damage caused to lung tissue by diseases such as emphysema, bronchitis, asthma, and cystic fibrosis is based on transplanting embryonic stem cells into damaged lungs that have been conditioned by radiation treatment.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) recognized the similarity between the arrangement of cellular compartments within the lung and the arrangement of similar compartments in the bone marrow. More...
They reasoned that methods used for bone marrow transplantation might prove useful for inducing stem cells to mature into functional lung tissue.

Initial experiments indicated that human and mouse embryonic lung tissue from the canalicular stage of development (20–22 weeks of gestation for humans, and embryonic day 15–16 for the mouse) were enriched with stem cell progenitors residing in distinct niches. Younger cells had not yet completed the process of differentiation, while older cells were less capable of lung regeneration.

The investigators exposed naphthalene-injured, lung damaged mice to doses of sublethal radiation to empty out lung progenitor niches and to reduce stem cell competition. A single cell suspension of canalicular lung tissue of either mouse or human fetal origin was then administered intravenously.

Results published in the July 13, 2015, online edition of the journal Nature Medicine revealed that recipients of the single cell suspension transplant exhibited marked improvement in lung compliance. The treatment induced marked long-term lung chimerism with donor type structures or "patches" that contained epithelial, mesenchymal, and endothelial cells.

"Certain stem cells that normally reside in the lungs are highly similar to those in the bone marrow," said senior author Dr. Yair Reisner, professor of immunology at the Weizmann Institute of Science. "In each organ, the stem cells, rather than being distributed throughout the tissue, are concentrated in special compartments that contain all the provisions that stem cells need. That understanding suggested to us that we might be able to apply our knowledge of techniques for transplanting bone marrow stem cells to repairing lung tissue, but our real vision, bolstered by this success, is to create a bank of lung tissue that will be a resource for embryonic lung stem cells."

Related Links:

Weizmann Institute of Science



Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.