We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Intracellular Mesh Supports the Mitotic Spindle During Cell Division

By LabMedica International staff writers
Posted on 19 Jul 2015
Three-dimensional electron microscopy has revealed the existence of an intracellular mesh that supports cell division by maintaining the correct geometrical spacing of the chromosomes at the mitotic spindle.

Kinetochore fibers (K-fibers) of the mitotic spindle are force-generating units that power chromosome movement during mitosis. More...
K-fibers are composed of many microtubules that are held together throughout their length.

When they switched from two-dimensional to three-dimensional electron microscopy, investigators at the University of Warwick (United Kingdom) discovered that K-fiber microtubules (MTs) were connected by a network of MT connectors. The investigators called this network "the mesh" and described it as being made of linked multipolar connectors. Each connector had up to four struts, so that a single connector could link up to four MTs.

While optimal stabilization of K-fibers by the mesh was required for normal progression through mitosis, the investigators reported in the June 19, 2015, online edition of the journal eLife that molecular manipulation of the mesh by overexpression of TACC3 (transforming, acidic coiled-coil containing protein 3) caused disorganization of the K-fiber MTs. TACC3 is a motor spindle protein that is thought to play a role in stabilization of the mitotic spindle. This protein may also play a role in growth a differentiation of certain cancer cells.

Senior author Dr. Stephen J. Royle, associate professor of biomedical cell biology at the University of Warwick, said, "We had been looking in two-D and this gave the impression that "bridges" linked microtubules together. This had been known since the 1970s. All of a sudden, tilting the fiber in three-D showed us that the bridges were not single struts at all but a web-like structure linking all the microtubules together."

"As a cell biologist you dream of finding a new structure in cells but it is so unlikely," said Dr. Royle. "Scientists have been looking at cells since the 17th Century and so to find something that no-one has seen before is amazing."

Related Links:
University of Warwick



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.