We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Antibody Cocktail Blocks Growth of Drug-Resistant Lung Tumors in Mouse Model

By LabMedica International staff writers
Posted on 17 Jun 2015
Cancer researchers developed a cocktail of three monoclonal antibodies that was able to halt drug-resistant tumor growth in a mouse xenograft lung cancer model.

Lung cancer patients with primary epidermal growth factor receptor (EGFR) mutations usually respond well to treatment with targeted kinase inhibitors, but almost always develop drug acquire resistance, often due to a second-site mutation (T790M). More...
Clinical trials have tested the ability of a monoclonal antibody (mAb) to EGFR but failed to demonstrate any survival benefits despite the fact that the mAB should have blocked activation of the mutated receptor.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) traced the reason for this failure. By using cell lines with the T790M mutation, they discovered that prolonged exposure to mAbs against only the EGFR triggered molecular network rewiring by (i) stimulating the extracellular signal–regulated kinase (ERK) pathway; (ii) inducing the transcription of HER2 (human epidermal growth factor receptor 2) and HER3, which encode other members of the EGFR family, and the gene encoding HGF (hepatocyte growth factor), which is the ligand for the receptor tyrosine kinase MET, a molecule often expressed in metastatic cancers.

To counter the emergence of this new pathway, the investigators developed mAbs against HER2 and HER3. They reported in the June 2, 2015, online edition of the journal Science Signaling that supplementing the EGFR-specific mAb with those targeting HER2 and HER3 suppressed the compensatory feedback loops that had developed in cultured lung cancer cells. The triple mAb combination targeting all three receptors prevented the activation of ERK, accelerated the degradation of the receptors and inhibited the proliferation of tumor cells but not of normal cells. Furthermore, treatment with the antibody cocktail markedly reduced the growth of tumors in mice xenografted with cells that were resistant to combined treatment with erlotinib and the single function-blocking EGFR mAb.

"Treatment by blocking a single target can cause a feedback loop that ultimately leads to a resurgence of the cancer," said senior author Dr. Yosef Yarden, professor of molecular cell biology at the Weizmann Institute of Science. "If we can predict how the cancer cell will react when we block the growth signals it needs to continue proliferating, we can take preemptive steps to prevent this from happening."

Related Links:

Weizmann Institute of Science



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
New
Modular Hemostasis Automation Solution
CN Track
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.