We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Zebrafish Embryo Model Helps Explain How Coronary Blood Vessels Develop

By LabMedica International staff writers
Posted on 10 Jun 2015
Developmental biologists have used a zebrafish embryo model to study the factors that control the formation and maturation of coronary blood vessels.

Zebrafish have become an important vertebrate model for cardiovascular research, as these animals have the ability to regenerate their heart if damaged, and because the transparency of the embryos allows easy observation of internal processes like blood vessel development. More...


Investigators at Children’s Hospital Los Angeles (CA, USA) used confocal microscopy and time-lapse imaging to visualize development of coronary vessels in zebrafish embryos. They reported in the May 26, 2015, issue of the journal Developmental Cell that coronary vessels sprang from the endocardium, specifically from the atrioventricular canal, the structure that divides the heart into compartments.

At the molecular level the investigators learned that endothelial cells expressing the chemokine receptor Cxcr4 (C-X-C chemokine receptor type 4) migrated to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12 (C-X-C motif chemokine 12). Mutant zebrafish lacking Cxcr4 failed to form a vascular network, whereas ectopic expression of Cxcl12 ligand induced coronary vessel formation. Importantly, Cxcr4 mutant zebrafish failed to undergo heart regeneration following injury.

“This furthers our efforts into heart regeneration to repair human hearts,” said senior author Dr. Ching-Ling Lien, assistant professor of cardiothoracic surgery at Children’s Hospital Los Angeles. “We have now found a novel source of cells that can differentiate into coronary vessels and have identified the factors required.”

“Children or young adults may not be aware of having abnormal coronary vessels because their circulation is adequate until the heart is stressed by increased demands, for instance when participating in strenuous sports,” said Dr. Lien. “Then suddenly, an apparently healthy, young person dies. Alternatively, a person with abnormal coronary vessels might have higher risk of experiencing heart attacks later on in life. Our findings will guide future study toward understanding these devastating conditions in order to be better able to diagnose them and develop interventional strategies.”

Related Links:

Children’s Hospital Los Angeles



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
PSA Assay
CanAg PSA EIA
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.