We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Sorting and Selecting Cancer Cells by Their Motility Will Advance Understanding of Metastatic Processes

By LabMedica International staff writers
Posted on 03 Jun 2015
In order to develop a better understanding of the mechanisms that cause some cancer cells to break away from the primary tumor and migrate to other parts of the body, a team of cancer researchers has created an instrument for sorting and selecting cancer cells based on their motility.

Tumor cell migration toward and into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. More...
This heterogeneity within a tumor is a fundamental property of cancer.

Conventional in vitro migration platforms have so far related to cell populations as an aggregate, which has led to a masking of intrinsic differences among cells. While some migration assays have reported the ability to resolve single cells, these platforms did not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis.

Therefore, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, investigators at the University of Michigan (Ann Arbor, USA) developed a single-cell migration platform so that individual cells’ migration behavior could be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences.

In addition, as described in a paper published in the May 18, 2015, online edition of the journal Scientific Reports, the investigators modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.

"This work demonstrates an elegant approach to the study of cancer cell metastasis by combining expertise in engineering and biology," said senior author Dr. Euisik Yoon, professor of electrical engineering, computer science, and biomedical engineering at the University of Michigan. "In past decades, engineers have developed biological tools with better resolution, higher sensitivity, selectivity, and higher throughput. However, without compelling applications, these engineering tools have little practical relevance. The goal of our lab is to develop tools that can be widely disseminated to the biology community to eventually impact clinical care for patients."

Related Links:

University of Michigan



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Staining System
RAL DIFF-QUIK
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.