We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Exome Delivery of the Anti-Oxidant Catalase Reduces Parkinson's Disease Symptoms in Mouse Model

By LabMedica International staff writers
Posted on 20 May 2015
The exosome delivery of the antioxidant enzyme catalase was shown to dramatically reduce symptoms of Parkinson's disease (PD) in a mouse model.

Exosomes are cell-derived vesicles that are present in many and perhaps all biological fluids, including blood, urine, and cultured medium of cell cultures. More...
The reported diameter of exosomes is between 30 and 100 nanometers, which is larger than low-density lipoproteins but much smaller than red blood cells. Exosomes, which contain RNA, proteins, lipids and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies fuse with the plasma membrane or they are released directly from the plasma membrane. Exosomes have specialized functions and play a key role in coagulation, intercellular signaling, and waste management. Consequently, there is a growing interest in the clinical applications of exosomes for prognosis, therapy, and as biomarkers for health and disease.

Catalase is a key antioxidant enzyme that defends the organism against oxidative stress. It is a heme enzyme that is present in the peroxisomes of nearly all aerobic cells. Catalase converts the reactive oxygen species hydrogen peroxide to water and oxygen and thereby mitigates its toxic effects. The protein exists as a dumbbell-shaped tetramer of four identical subunits (220,000 to 350,000 Daltons). Each monomer contains a heme prosthetic group at the catalytic center.

Investigators at the University of North Carolina (Chapel Hill, USA) developed a new exosomal-based system to deliver catalase to the brain for the treatment of PD. Catalase was loaded into exosomes purified from immune system macrophages using different methods: incubation at room temperature, permeabilization with saponin, freeze–thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes was in the range of 100 to 200 nanometers. A reformation of exosomes upon sonication and extrusion, or permeabilization with saponin resulted in high loading efficiency, sustained release, and catalase preservation against proteases degradation.

Results published in the March 30, 2015, online edition of the Journal of Controlled Release indicated that exosomes were readily taken up by neuronal cells in vitro. A considerable quantity of exosomes was detected in the brains of PD mice following intranasal administration. Catalase-loaded exosome treatment provided significant neuroprotective effects in both in vitro and in vivo models of PD.

"Exosomes are engineered by nature to be the perfect delivery vehicles for proteins and genetic material," said senior author Dr. Elena Batrakova, associate professor of pharmacy at the University of North Carolina. "Catalase is a huge protein, and it is almost impossible to deliver across the blood-brain barrier alone. We use exosomes from white blood cells, which are invisible to the immune system and easily interact and fuse with the blood-brain barrier to deliver their cargo across it."

"Catalase is one of the most potent antioxidants in nature," said Dr. Batrakova. "One molecule of catalase can deactivate about one million free radicals per second, and it never stops because the enzyme is not consumed in the reaction. No small molecule drug even comes close to matching it in speed or efficiency."

Related Links:
University of North Carolina



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Specimen Radiography System
TrueView 200 Pro
New
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.