We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Nano Technique Rapidly Inserts Nucleic Acids into Cells

By LabMedica International staff writers
Posted on 27 Apr 2015
Researchers have unveiled a novel technique for inserting nucleic acids into cells that is based on biodegradable silicon-based "nanoneedles."

The porous nanoneedles act like a sponge to transport nucleic acids significantly better than similarly sized solid structures. More...
The needles deliver their load by penetrating the cell's outer membrane without harming or killing the cell. The nanoneedles are made from biodegradable silicon that degrades in about two days, leaving behind only a negligible amount of nontoxic orthosilicic acid.

Investigators at Imperial College London (United Kingdom) and Houston Methodist Research Institute (TX, USA) used nanoneedle technology to deliver DNA and siRNA into human cells growing in culture and into the back muscles of mice. They reported in the March 30, 2015, online edition of the journal Nature Materials that seven days following insertion of the VEGF (vascular endothelial growth factor)-165 gene into the mouse back muscles there was a six-fold increase in the formation of new blood vessels, and blood vessels continued to form over a 14 day period. The technique did not seem to cause inflammation or other apparent harmful side effects.

"This is a quantum leap compared to existing technologies for the delivery of genetic material to cells and tissues," said senior author Dr. Ennio Tasciotti, professor of nanomedicine at Houston Methodist Research. "By gaining direct access to the cytoplasm of the cell we have achieved genetic reprogramming at an incredible high efficiency. This will let us personalize treatments for each patient, giving us endless possibilities in sensing, diagnosis and therapy. And all of this thanks to tiny structures that are up to 1,000 times smaller than a human hair."

Contributing author Dr. Molly Stevens, professor of bioengineering at Imperial College London, said, "It is still very early days in our research, but we are pleased that the nanoneedles have been successful in this trial in mice. There are a number of hurdles to overcome and we have not yet trialled the nanoneedles in humans, but we think they have enormous potential for helping the body to repair itself."

Related Links:

Imperial College London
Houston Methodist Research Institute



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.