We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Model for Lung Disease Research Based on Stem Cell-derived Lung Organoids

By LabMedica International staff writers
Posted on 08 Apr 2015
By manipulating cocktails of growth factors, researchers have stimulated human stem cells to morph into tissues that self-organize into three-dimensional structures populated by cells resembling those in the lung.

The research leading to development of these lung organoids was based on recent breakthroughs in three-dimensional organoid cultures for many organ systems, which have led to new physiologically complex in vitro models to study human development and disease.

In the current study, investigators at the University of Michigan (Ann Arbor, USA) manipulated developmental signaling pathways to guide the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. More...


They reported in the March 24, 2015, online edition of the journal eLife that hPSCs generated ventral-anterior foregut spheroids, which were then expanded into human lung organoids (HLOs). HLOs consisted of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possessed upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. HLOs were able to survive in culture for more than 100 days.

Using RNA-sequencing, the investigators showed that HLOs were remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs would be an excellent model system for the study of human lung development, maturation, and disease.

“These mini lungs can mimic the responses of real tissues and will be a good model to study how organs form, change with disease, and how they might respond to new drugs,” said senior author Dr. Jason R. Spence, assistant professor of internal medicine and cell and developmental biology at the University of Michigan.

Related Links:
University of Michigan



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.