We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Stem Cell Therapy Cures Diabetes in Mouse Model

By LabMedica International staff writers
Posted on 08 Feb 2015
Diabetes researchers modified human skin cells to produce insulin and showed that after being injected into diabetic immunodeficient mice, the cells developed into an insulin-producing organoid capable of modulating the animals' glucose metabolism.

In type I diabetes, the individual's immune system attacks and destroys the pancreatic beta cells that produce insulin. More...
While pancreas transplants from cadavers can be used to treat the disorder, the very small number of available organs limits usefulness of this method.

In a different approach, investigators at the University of Iowa (Iowa City, USA) modified human skin cells to create induced pluripotent stem (iPS) cells. The undifferentiated iPS cells were subjected to differentiation using a multistep protocol to generate insulin producing cells (IPCs) in vitro. The successful differentiation of human iPS cells into IPCs was validated by real-time quantitative PCR, immunostaining, transmission electron microscopy, and mitochondria stress tests.

The IPCs were injected into streptozotocin-induced diabetic immunodeficient mice under the kidney capsule, a thin membrane layer that surrounds the kidney. The real-time fate of the transplanted IPCs was monitored by MRI, which revealed the presence of an organoid on the kidneys of the mice that received IPCs. These organoids showed neo-vascularization and stained positive for insulin and glucagon. The animals' serum glucose levels gradually declined to either normal or near normal levels over 150 days, suggesting that the IPCs were secreting insulin. Furthermore, none of the mice that had received IPCs developed tumors from the transplanted stem cells.

"This raises the possibility that we could treat patients with diabetes with their own cells," said senior author Dr. Nicholas Zavazava, professor of internal medicine at the University of Iowa. "That would be a major advance, which will accelerate treatment of diabetes."

The study was published in the January 28, 2015, online edition of the journal PLOS ONE.

Related Links:

University of Iowa



Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
New
Staining System
RAL DIFF-QUIK
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.