We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Artificial Cell Demonstrates Dynamic Gene Regulation

By LabMedica International staff writers
Posted on 14 Dec 2014
A team of Israeli scientists created an "artificial cell" on a silicon chip that is capable of metabolism, programmable protein synthesis, and molecular signaling.

The assembly of artificial cells capable of executing synthetic DNA programs has been an important goal for basic research and biotechnology. More...
In a step toward reaching this goal, investigators at the Weizmann Institute of Science (Rehovot, Israel) assembled artificial cells based on two-dimensional DNA compartments fabricated in silicon. Each compartment contained strands of DNA together with an extract of E. coli bacteria lacking its own DNA. Metabolism was maintained by continuous diffusion of nutrients and products through a thin capillary, connecting protein synthesis in the DNA compartments with the environment.

These unique biochips were based on a new molecule, that the investigators called "Daisy," which formed a photolitographic monolayer on glass. Using photolithography, they were able to immobilize any biomolecule on Daisy-coated surfaces with controlled density at sub-micron resolution. Specifically, they developed a methodology for immobilizing whole genes, thousands of base-pairs long, at local gene density similar to that in a bacterium cell. This DNA/surface interface provided means to investigate gene expression under conditions of crowding and confinement. Additionally, they demonstrated a simple two-stage gene circuit and the integration of such systems in microfluidic devices.

A paper published in the August 15, 2014, issue of the journal Science described the programming of protein expression cycles, autoregulated protein levels, and a signaling expression gradient in an array of interconnected compartments at the scale of an embryo. Gene expression in the DNA compartment revealed a rich, dynamic system that was controlled by geometry, offering a means for studying biological networks outside a living cell.

Senior author Dr. Roy Bar-Ziv, professor of materials and interfaces at the Weizmann Institute of Science, said, “The idea to mimic a living cell is a longstanding dream shared by many. If we can build a primitive model of something so complex, we can possibly understand the dynamics of protein synthesis better. Our on-chip "genome" is in the form of a DNA brush with thousands of DNA strands attached at one of their ends to the surface like the hairs of a toothbrush. In principle, we can encode thousands of different genes. In practice, we demonstrated simple gene networks that are composed with just two genes hooked up to each other to create feedback. We will never be able to reproduce a complex cell that has evolved for millions of years. But we can design a primitive system that mimics the dynamics of all cells, synthesizing the appropriate enzymes and proteins to digest the food source and shutting down those not needed anymore.”

“Our major achievement is having localization of protein synthesis on the surface, and turning on and off genes dynamically,” said Dr. Bar-Ziv. “That is important, because in our own cells there is always a dynamic regulation going on between protein synthesis and gene shut-off. Without a mechanism to regulate that in artificial cells, you cannot have dynamic behavior such as oscillation. By embedding the appropriate genes, we were able to demonstrate for the first time dynamic modes approaching synthesis.”

Related Links:
Weizmann Institute of Science



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.