We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Shape Memory Polymer Designed to Help Reconstruct Faces

By LabMedica International staff writers
Posted on 27 Aug 2014
Researchers have developed a “self-fitting” material that expands with warm salt water to effectively fill bone defects, and also acts as a scaffold for new bone growth.

Birth defects, such as cleft palates, injuries, or surgery to remove a tumor can create gaps in bone that are too large to heal naturally. More...
Furthermore, when they occur in the head, face, or jaw, these bone defects can dramatically alter an individual’s appearance.

The researchers described their approach at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society, on August 13, 2014, held in San Francisco (CA, USA). Currently, the most common way to fill bone defects in the face, head, or jaw (the cranio-maxillofacial area) is autografting: a process in which surgeons harvest bone from somewhere else in the body, such as the hip bone, and then try to shape it to fit the bone defect. “The problem is that the autograft is a rigid material that is very difficult to shape into these irregular defects,” said Melissa Grunlan, PhD, leader of the study.

Moreover, harvesting bone for the autograft can itself create complications at the place where the bone was taken. Another strategy is to use bone putty or cement to fill gaps. However, these materials are not ideal. They become very brittle when they harden, and they do not have pores, or small holes, that permit new bone cells to move in and reconstruct the damaged tissue.

To develop a better material, Dr. Grunlan and her colleagues from Texas A&M University (College Station, USA) constructed a shape-memory polymer (SMP) that molds itself precisely to the shape of the bone defect without being brittle. It also supports the growth of new bone tissue.

SMPs are materials whose geometry changes in response to heat. The investigators made a porous SMP foam by linking together molecules of poly(ε-caprolactone), an elastic, biodegradable substance that is already used in some medical implants. The resulting material resembled a stiff sponge, with many interconnected pores to allow bone cells to migrate in and grow. Upon heating to 60 °C, the SMP becomes very soft and pliable. Therefore, during surgery to repair a bone defect, a surgeon could warm the SMP to that temperature and fill in the defect with the softened substance. Then, as the SMP is cooled to body temperature, it would resume its former stiff texture and “lock” into place.

The researchers also coated the SMPs with polydopamine, a sticky substance that helps lock the polymer into position by inducing formation of a mineral that is found in bone. It may also help osteoblasts, the cells that generate bone, to stick and spread throughout the polymer. The SMP is biodegradable, so that eventually the scaffold will disappear, leaving only new bone tissue behind.

To evaluate whether the SMP scaffold could support bone cell growth, the researchers seeded the polymer with human osteoblasts. After three days, the polydopamine-coated SMPs had grown about five times more osteoblasts than those without a coating. Furthermore, the osteoblasts produced more of the two proteins, runX2 and osteopontin, which are critical for new bone formation.

Dr. Grunlan reported that the next phase of the research will be to evaluate the SMP’s ability to heal cranio-maxillofacial bone defects in animals. “The work we’ve done in vitro is very encouraging,” she says. “Now we’d like to move this into preclinical, and hopefully, clinical studies.”

Related Links:
Texas A&M University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Automated PCR Setup
ESTREAM
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.