We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Surface Protein Protects Brain Tumor Cells from Immune Attack

By LabMedica International staff writers
Posted on 19 Aug 2014
Malignant glioma brain tumor cells suppress the natural killer cell (NK) immune response by over expressing the surface protein galectin-1, and suppression of this protein renders the tumor cells susceptible to destruction by the immune system.

Galectin-1 (LGALS1 lectin, galactoside-binding, soluble, 1) is a member of the galectin family of beta-galactoside-binding proteins, which has been implicated in modulating cell-cell and cell-matrix interactions. More...
This protein may act as an autocrine negative growth factor that regulates cell proliferation. Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell.

Investigators at the University of Michigan (Ann Arbor, USA) had been studying gliomas, which make up about 80% of all malignant brain tumors, including anaplastic oligodendrogliomas, anaplastic astrocytomas, and glioblastoma multiforme.

In the current study, they used rodent models to demonstrate that malignant glioma cells suppressed NK immune surveillance by over expressing galectin-1. Conversely, galectin-1 deficient glioma cells could be eradicated by host NK cells prior to the initiation of an anti-tumor T-cell response. Results of in vitro experiments published in the July 18, 2014, online edition of the journal Cancer Research demonstrated that galectin-1 deficient GL26-Cit glioma cells were nearly three times more sensitive to NK-mediated tumor lysis than galectin-1 expressing cells.

“This is an incredibly novel and exciting development, and shows that in science we must always be open-minded and go where the science takes us; no matter where we thought we wanted to go,” said senior author Dr. Pedro Lowenstein, professor of neurosurgery at the University of Michigan. “In this case, we found that over-expression of galectin-1 inhibits the innate immune system, and this allows the tumor to grow enough to evade any possible effective T-cell response. By the time it is detected, the battle is already lost.”

Related Links:

University of Michigan



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.