We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

By LabMedica International staff writers
Posted on 31 Jul 2014
A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose metabolism.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) worked with a mouse model of diet-induced diabetes, the rodent equivalent of human type II diabetes. More...
Previous studies had shown that when these mice were prevented from producing FGF1 and then placed on a high-fat diet, they quickly developed diabetes.

In the current study, the investigators expanded research on the link between FGF1 and diabetes by greatly increasing FGF1 levels in the mice. This was done by injecting the animals with one or more doses of recombinant FGF1 (rFGF1).

Results published in the July 16, 2014, online edition of the journal Nature revealed that the single dose of rFGF1 caused potent, insulin-dependent lowering of glucose levels in diabetic mice that was dose-dependent but did not lead to hypoglycemia. Chronic pharmacological treatment with rFGF1 increased insulin-dependent glucose uptake in skeletal muscle and suppressed production of glucose in the liver to achieve whole-body insulin sensitization. The sustained glucose lowering and insulin sensitization attributed to rFGF1 were not accompanied by the side effects of weight gain, fat accumulation in the liver, and bone loss associated with current insulin-sensitizing therapies. In addition, the glucose-lowering activity of FGF1 could be dissociated from its mitogenic activity and was mediated predominantly via FGF receptor 1 signaling.

"There are many questions that emerge from this work and the avenues for investigating FGF1 in diabetes and metabolism are now wide open," said senior author Dr. Ronald M. Evans, director of the gene expression laboratory at the Salk Institute for Biological Studies. "We want to move this to people by developing a new generation of FGF1 variants that solely affect glucose and not cell growth. If we can find the perfect variation, I think we will have on our hands a very new, very effective tool for glucose control."

Related Links:

Salk Institute for Biological Studies



New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.